Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma

[1]  S. Clarke,et al.  Cyto-Immuno-Therapy for Cancer: A Pathway Elicited by Tumor-Targeted, Cytotoxic Drug-Packaged Bacterially Derived Nanocells. , 2020, Cancer cell.

[2]  Liling Tang,et al.  MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer , 2019, Journal of experimental & clinical cancer research : CR.

[3]  Rosalind L. Jeffree,et al.  Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma , 2019, Cancers.

[4]  C. Eberhart,et al.  Bioreducible Polymeric Nanoparticles Containing Multiplexed Cancer Stem Cell Regulating miRNAs Inhibit Glioblastoma Growth and Prolong Survival. , 2018, Nano letters.

[5]  T. Massoud,et al.  Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model , 2018, Oncotarget.

[6]  Diane D. Liu,et al.  Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma , 2018, Neuro-oncology.

[7]  Artemis G. Hatzigeorgiou,et al.  DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions , 2017, Nucleic Acids Res..

[8]  Aamir Ahmad,et al.  MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers , 2017, International journal of molecular sciences.

[9]  D. Karunagaran,et al.  miR‐214 activates TP53 but suppresses the expression of RELA, CTNNB1, and STAT3 in human cervical and colorectal cancer cells , 2017, Cell biochemistry and function.

[10]  Lisa C. Wallace,et al.  Targeting Glioma Stem Cells through Combined BMI1 and EZH2 Inhibition , 2017, Nature Medicine.

[11]  D. Jesionek-Kupnicka,et al.  MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients , 2017, Archives of medical science : AMS.

[12]  C. Croce,et al.  RNA Nanoparticle-Based Targeted Therapy for Glioblastoma through Inhibition of Oncogenic miR-21. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[13]  Eran A Barnoy,et al.  The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. , 2017, Nanomedicine.

[14]  S. Bilbo,et al.  Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue , 2017, Journal of Neuroscience Methods.

[15]  Weilin Wu,et al.  Descriptor : MicroRNA screening identi fi es miR-134 as a regulator of poliovirus and enterovirus 71 infection , 2017 .

[16]  M. Junier,et al.  Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth , 2017, Cell Death and Disease.

[17]  F. Slack,et al.  MicroRNA therapeutics: towards a new era for the management of cancer and other diseases , 2017, Nature Reviews Drug Discovery.

[18]  Erwin G. Van Meir,et al.  Overcoming therapeutic resistance in glioblastoma: the way forward. , 2017, The Journal of clinical investigation.

[19]  Mårten Fryknäs,et al.  Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. , 2016, Cell reports.

[20]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[21]  R. Haag,et al.  Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Z. Ram,et al.  Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[23]  M. Verma,et al.  MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics , 2016, Cancer medicine.

[24]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[25]  Sang Y Lee Temozolomide resistance in glioblastoma multiforme , 2016, Genes & diseases.

[26]  G. Gallia,et al.  Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model , 2016, PloS one.

[27]  J. Desai,et al.  A First-Time-In-Human Phase I Clinical Trial of Bispecific Antibody-Targeted, Paclitaxel-Packaged Bacterial Minicells , 2015, PloS one.

[28]  W. Banks,et al.  Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit , 2015, Journal of Neuroinflammation.

[29]  Katarzyna Rolle miRNA Multiplayers in glioma. From bench to bedside. , 2015, Acta biochimica Polonica.

[30]  J. Lieberman,et al.  miR-34 and p53: New Insights into a Complex Functional Relationship , 2015, PloS one.

[31]  Z. Granot,et al.  MET is required for the recruitment of anti-tumoural neutrophils , 2015, Nature.

[32]  Artemis G. Hatzigeorgiou,et al.  DIANA-miRPath v3.0: deciphering microRNA function with experimental support , 2015, Nucleic Acids Res..

[33]  T. Wurdinger,et al.  Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. , 2015, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[34]  Sha Li,et al.  Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function , 2015, Genom. Proteom. Bioinform..

[35]  Christopher B. Howard,et al.  Nanocell targeting using engineered bispecific antibodies , 2014, mAbs.

[36]  Athanasios Fevgas,et al.  DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions , 2014, Nucleic Acids Res..

[37]  Robert Langer,et al.  Small RNA combination therapy for lung cancer , 2014, Proceedings of the National Academy of Sciences.

[38]  Gary D Bader,et al.  Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity , 2015, Proceedings of the National Academy of Sciences.

[39]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[40]  Steven J. Greco,et al.  Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43 , 2014, Cell Death and Disease.

[41]  T. Speed,et al.  A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression , 2014, Genes & development.

[42]  M. Williams,et al.  Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. , 2013, Annals of oncology : official journal of the European Society for Medical Oncology.

[43]  B. Kaina,et al.  Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide , 2013, Molecular Cancer Therapeutics.

[44]  Michael Chopp,et al.  Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. , 2013, Cancer letters.

[45]  Haifeng Gao,et al.  Expression level of human miR-34a correlates with glioma grade and prognosis , 2013, Journal of Neuro-Oncology.

[46]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[47]  Hartwig Wolburg,et al.  The disturbed blood-brain barrier in human glioblastoma. , 2012, Molecular aspects of medicine.

[48]  Elizabeth Nance,et al.  A Dense Poly(Ethylene Glycol) Coating Improves Penetration of Large Polymeric Nanoparticles Within Brain Tissue , 2012, Science Translational Medicine.

[49]  Martin Reczko,et al.  DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways , 2012, Nucleic Acids Res..

[50]  M. Caroli,et al.  Glucosylceramide Synthase Protects Glioblastoma Cells Against Autophagic and Apoptotic Death Induced by Temozolomide and Paclitaxel , 2012, Cancer investigation.

[51]  Rebecca A Betensky,et al.  Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. , 2011, Cancer cell.

[52]  J. Macdiarmid,et al.  Minicells: versatile vectors for targeted drug or si/shRNA cancer therapy. , 2011, Current opinion in biotechnology.

[53]  M. Huizing,et al.  Retro-orbital injections in mice , 2011, Lab Animal.

[54]  J. Sarkaria,et al.  Establishment, Maintenance, and In Vitro and In Vivo Applications of Primary Human Glioblastoma Multiforme (GBM) Xenograft Models for Translational Biology Studies and Drug Discovery , 2011, Current protocols in pharmacology.

[55]  C. James,et al.  Establishing Intracranial Brain Tumor Xenografts With Subsequent Analysis of Tumor Growth and Response to Therapy using Bioluminescence Imaging , 2010, Journal of visualized experiments : JoVE.

[56]  H. Hermeking The miR-34 family in cancer and apoptosis , 2010, Cell Death and Differentiation.

[57]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[58]  T. Chou Drug combination studies and their synergy quantification using the Chou-Talalay method. , 2010, Cancer research.

[59]  B. Stillman,et al.  Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug , 2009, Nature Biotechnology.

[60]  Lauren E. Abrey,et al.  Neurological outcome of long-term glioblastoma survivors , 2009, Journal of Neuro-Oncology.

[61]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[62]  K. Rex,et al.  AMG 102, A Fully Human Anti-Hepatocyte Growth Factor/Scatter Factor Neutralizing Antibody, Enhances the Efficacy of Temozolomide or Docetaxel in U-87 MG Cells and Xenografts , 2007, Clinical Cancer Research.

[63]  Bruce Stillman,et al.  Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. , 2007, Cancer cell.

[64]  Kanyawim Kirtikara,et al.  Sulforhodamine B colorimetric assay for cytotoxicity screening , 2006, Nature Protocols.

[65]  Charles Nicholson,et al.  In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[67]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[68]  M. Ranson,et al.  Sensitization of a human ovarian cancer cell line to temozolomide by simultaneous attenuation of the Bcl-2 antiapoptotic protein and DNA repair by O6-alkylguanine-DNA alkyltransferase. , 2004, Molecular cancer therapeutics.

[69]  R. Verhaak,et al.  GlioVis data portal for visualization and analysis of brain tumor expression datasets. , 2017, Neuro-oncology.