Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study

[1]  J. Bowden,et al.  Testing and correcting for weak and pleiotropic instruments in two‐sample multivariable Mendelian randomization , 2020, bioRxiv.

[2]  C. Ulrich,et al.  Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses , 2019, Gastroenterology.

[3]  T. Key,et al.  Insulin-like growth factor-1 (IGF-1), insulin-like growth factor-binding protein-3 (IGFBP-3) and breast cancer risk: observational and Mendelian randomization analyses , 2019, bioRxiv.

[4]  D. Lawlor,et al.  Bias in two-sample Mendelian randomization by using covariable-adjusted summary associations , 2019, bioRxiv.

[5]  J. Manson,et al.  Intentional Weight Loss and Obesity-Related Cancer Risk , 2019, JNCI cancer spectrum.

[6]  A. Jemal,et al.  Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. , 2019, The Lancet. Public health.

[7]  A. Bardelli,et al.  Early‐onset colorectal cancer in young individuals , 2018, Molecular oncology.

[8]  N. Timpson,et al.  Associations of Body Mass and Fat Indexes With Cardiometabolic Traits , 2018, Journal of the American College of Cardiology.

[9]  Mathieu Lemire,et al.  Discovery of common and rare genetic risk variants for colorectal cancer , 2018, Nature Genetics.

[10]  E. Riboli,et al.  Obesity and gastrointestinal cancers — where do we go from here? , 2018, Nature Reviews Gastroenterology & Hepatology.

[11]  G. Smith,et al.  Invited Commentary: Detecting Individual and Global Horizontal Pleiotropy in Mendelian Randomization—A Job for the Humble Heterogeneity Statistic? , 2018, American journal of epidemiology.

[12]  M. Gunter,et al.  Adiposity and gastrointestinal cancers: epidemiology, mechanisms and future directions , 2018, Nature Reviews Gastroenterology & Hepatology.

[13]  S. Gruber,et al.  Abstract 235: Type 2 diabetes and glycemic traits in relation to colorectal cancer risk: A Mendelian randomization study , 2018, Epidemiology.

[14]  F. Windmeijer,et al.  An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings , 2018, bioRxiv.

[15]  Samuel E. Jones,et al.  Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry , 2018, bioRxiv.

[16]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[17]  G. Davey Smith,et al.  Problems in interpreting and using GWAS of conditional phenotypes illustrated by “alcohol GWAS” , 2018, Molecular Psychiatry.

[18]  George Davey Smith,et al.  Recent Developments in Mendelian Randomization Studies , 2017, Current Epidemiology Reports.

[19]  Aung Ko Win,et al.  Pro-inflammatory fatty acid profile and colorectal cancer risk : A Mendelian randomisation analysis , 2017 .

[20]  Fernando Pires Hartwig,et al.  Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption , 2017, bioRxiv.

[21]  G. Smith,et al.  Mendelian randomization in cardiometabolic disease: challenges in evaluating causality , 2017, Nature Reviews Cardiology.

[22]  Debbie A Lawlor,et al.  Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies , 2017, American journal of epidemiology.

[23]  Aung Ko Win,et al.  Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer , 2017, International journal of cancer.

[24]  Stephen Burgess,et al.  Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants , 2016, Epidemiology.

[25]  Debbie A Lawlor,et al.  Triangulation in aetiological epidemiology , 2016, International journal of epidemiology.

[26]  S. Thompson,et al.  Bias due to participant overlap in two‐sample Mendelian randomization , 2016, Genetic epidemiology.

[27]  K. Straif,et al.  Body Fatness and Cancer--Viewpoint of the IARC Working Group. , 2016, The New England journal of medicine.

[28]  Jens Nielsen,et al.  Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. , 2016, Cell metabolism.

[29]  Aung Ko Win,et al.  Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer , 2016, British Journal of Cancer.

[30]  W. Willett,et al.  Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer. , 2016, International journal of epidemiology.

[31]  D. Lawlor Commentary: Two-sample Mendelian randomization: opportunities and challenges , 2016, International journal of epidemiology.

[32]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[33]  N. Lazar,et al.  The ASA Statement on p-Values: Context, Process, and Purpose , 2016 .

[34]  M. Pirinen,et al.  Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA , 2016, Nature Communications.

[35]  G. Davey Smith,et al.  Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies1 , 2016, The American journal of clinical nutrition.

[36]  Aung Ko Win,et al.  Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk , 2015, Cancer Epidemiology, Biomarkers & Prevention.

[37]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[38]  Wei-Hong Chen,et al.  Adipose-derived stem cells promote tumor initiation and accelerate tumor growth by interleukin-6 production , 2015, Oncotarget.

[39]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[40]  Peter Kraft,et al.  Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. , 2015, American journal of human genetics.

[41]  M. Bissonnette,et al.  Tumor suppressors miR-143 and miR-145 and predicted target proteins API5, ERK5, K-RAS, and IRS-1 are differentially expressed in proximal and distal colon. , 2015, American journal of physiology. Gastrointestinal and liver physiology.

[42]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[43]  Z. Tian,et al.  Dyslipidemia and colorectal cancer risk: a meta-analysis of prospective studies , 2014, Cancer Causes & Control.

[44]  Samuli Ripatti,et al.  Metabolic Signatures of Adiposity in Young Adults: Mendelian Randomization Analysis and Effects of Weight Change , 2014, PLoS medicine.

[45]  D. Nickerson,et al.  A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians , 2014, bioRxiv.

[46]  F T Bosman,et al.  Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[47]  G. Davey Smith,et al.  Mendelian randomization: genetic anchors for causal inference in epidemiological studies , 2014, Human molecular genetics.

[48]  A. Avenell,et al.  Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomised controlled trials , 2014, BMJ : British Medical Journal.

[49]  S. Bonovas,et al.  Statins and the risk of colorectal cancer: an updated systematic review and meta-analysis of 40 studies. , 2014, World journal of gastroenterology.

[50]  Bruce M. Spiegelman,et al.  What We Talk About When We Talk About Fat , 2014, Cell.

[51]  Shan Li,et al.  Association between statin use and colorectal cancer risk: a meta-analysis of 42 studies , 2013, Cancer Causes & Control.

[52]  P. O’Reilly,et al.  Long-term Leisure-time Physical Activity and Serum Metabolome , 2013, Circulation.

[53]  S. Thompson,et al.  Avoiding bias from weak instruments in Mendelian randomization studies. , 2011, International journal of epidemiology.

[54]  F. Clavel-Chapelon,et al.  Serum levels of IGF‐I, IGFBP‐3 and colorectal cancer risk: results from the EPIC cohort, plus a meta‐analysis of prospective studies , 2010, International journal of cancer.

[55]  Tamara B Harris,et al.  Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. , 2009, The American journal of clinical nutrition.

[56]  C. Champagne,et al.  Increased visceral fat and decreased energy expenditure during the menopausal transition , 2008, International Journal of Obesity.

[57]  E. Jacobs,et al.  Diet, gender, and colorectal neoplasia. , 2007, Journal of clinical gastroenterology.

[58]  J. Wells,et al.  Sexual dimorphism of body composition. , 2007, Best practice & research. Clinical endocrinology & metabolism.

[59]  S. Kahn,et al.  Mechanisms linking obesity to insulin resistance and type 2 diabetes , 2006, Nature.

[60]  G. Hotamisligil,et al.  Inflammation and metabolic disorders , 2006, Nature.

[61]  W. R. Bruce,et al.  Hyperinsulinemia, but not other factors associated with insulin resistance, acutely enhances colorectal epithelial proliferation in vivo. , 2006, Endocrinology.

[62]  C Michael White,et al.  Statins and Cancer Risk: A Meta-analysis , 2007 .

[63]  Jayadev Raju,et al.  Elevated insulin receptor protein expression in experimentally induced colonic tumors. , 2004, Cancer letters.

[64]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[65]  N. Nemoto,et al.  p53 mutation found to be a significant prognostic indicator in distal colorectal cancer. , 2001, Oncology reports.

[66]  R. Roetzheim,et al.  Predictors of proximalvs. distal colorectal cancers , 2001, Diseases of the colon and rectum.

[67]  Jonathan A C Sterne,et al.  Sifting the evidence—what's wrong with significance tests? , 2001, BMJ : British Medical Journal.

[68]  E. Riboli,et al.  Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. , 2000, Journal of the National Cancer Institute.

[69]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[70]  J. Higginson,et al.  International Agency for Research on Cancer. , 1968, WHO chronicle.

[71]  A. Wald The Fitting of Straight Lines if Both Variables are Subject to Error , 1940 .