Closing up on Dark Sectors at Colliders: from 14 to 100 TeV

-channel) messenger fields: scalar, pseudoscalar, vector or axial-vector. Our analysis extends and updates the previously available results for the LHC at 8 and 14 TeV to 100 TeV for models with all four messenger types. We revisit and improve the analysis at 14 TeV, by studying a variety of analysis techniques, concluding that the most discriminating variables correspond to the missing transverse energy and the azimuthal angle between jets in the final state. Going to 100 TeV, the limits on simplified models of dark matter are enhanced significantly, in particular for heavier mediators and dark sector particles, for which the available phase space at the LHC is restricted. The possibility of a 100 TeV collider provides an unprecedented coverage of the dark sector basic parameters and a unique opportunity to pin down the particle nature of dark matter and its interactions with the standard model.

[1]  D. Thompson,et al.  Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models , 2018 .

[2]  K. Mawatari,et al.  Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators , 2015, The European physical journal. C, Particles and fields.

[3]  O. Mattelaer,et al.  Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case , 2015, The European physical journal. C, Particles and fields.

[4]  G. Landsberg,et al.  Pseudoscalar portal dark matter and new signatures of vector-like fermions , 2015, 1507.06993.

[5]  J. Zupan,et al.  Integrating in the Higgs portal to fermion dark matter , 2015, 1506.04149.

[6]  A. S. Mete,et al.  Simplified Models for Dark Matter Searches at the LHC , 2015, 1506.03116.

[7]  B. Penning,et al.  Constraining the Fermi-LAT excess with multi-jet plus MET collider searches , 2015 .

[8]  M. Spannowsky,et al.  Spectroscopy of Scalar Mediators to Dark Matter at the LHC and at 100 TeV , 2015, 1505.03019.

[9]  F. Kahlhoefer,et al.  Constraining dark sectors with monojets and dijets , 2015, 1503.05916.

[10]  Qian-fei Xiang,et al.  Searches for dark matter signals in simplified models at future hadron colliders , 2015, 1503.02931.

[11]  Ulrich Haisch,et al.  Simplified dark matter top-quark interactions at the LHC , 2015, 1503.00691.

[12]  P. Fox,et al.  Relic neutralino surface at a 100 TeV collider , 2014, 1412.4789.

[13]  Philip Harris,et al.  Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach , 2014, 1411.0535.

[14]  M. Buckley,et al.  Scalar Simplified Models for Dark Matter , 2014, 1410.6497.

[15]  L. Gouskos,et al.  Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments , 2014, 1409.4075.

[16]  Matthew J. Dolan,et al.  Characterising dark matter searches at colliders and direct detection experiments: vector mediators , 2014, 1407.8257.

[17]  F. Sala,et al.  Erratum to: Wino-like Minimal Dark Matter and future colliders , 2014, Journal of High Energy Physics.

[18]  E. Diehl The search for dark matter using monojets and monophotons with the ATLAS detector , 2014 .

[19]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[20]  Lian-tao Wang,et al.  Neutralino dark matter at 14 TeV and 100 TeV , 2014, 1404.0682.

[21]  V. Khoze,et al.  Higgs vacuum stability from the dark matter portal , 2014, 1403.4953.

[22]  Y. Mambrini,et al.  Axial dark matter: The case for an invisible Z′ , 2014, 1403.4837.

[23]  Matthew J. Dolan,et al.  Extended gamma-ray emission from Coy Dark Matter , 2014, 1401.6458.

[24]  M. Hoferichter,et al.  Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: Disentangling two- and three-flavor effects , 2013, 1312.4951.

[25]  Matthew J. Dolan,et al.  Beyond effective field theory for dark matter searches at the LHC , 2013, 1308.6799.

[26]  Raymundo Ramos,et al.  Classical scale-invariance, the electroweak scale and vector dark matter , 2013, 1307.8428.

[27]  A. Strumia,et al.  Dynamical generation of the weak and Dark Matter scale , 2013, 1306.2329.

[28]  C. Englert,et al.  Emergence of the electroweak scale through the Higgs portal , 2013, 1301.4224.

[29]  P. Fox,et al.  Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders , 2012, 1211.6390.

[30]  F. Kahlhoefer,et al.  The impact of heavy-quark loops on LHC dark-matter searches , 2012, 1208.4605.

[31]  M. Kerner,et al.  Release Note -- Vbfnlo-2.6.0 , 2012, 1207.4975.

[32]  Hai-Yang Cheng,et al.  Revisiting scalar and pseudoscalar couplings with nucleons , 2012, 1202.1292.

[33]  Dao-Xin Yao,et al.  Constraining the interaction strength between dark matter and visible matter: II. Scalar, vector and spin-3/2 dark matter , 2011, 1112.6052.

[34]  Patrick J. Fox,et al.  Missing Energy Signatures of Dark Matter at the LHC , 2011, 1109.4398.

[35]  Xiao-Jun Bi,et al.  Constraining the interaction strength between dark matter and visible matter: I. Fermionic dark matter , 2010, 1012.2022.

[36]  C. Collaboration,et al.  Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS , 2011, 1107.4277.

[37]  Tilman Plehn,et al.  Exploring the Higgs portal , 2011, 1106.3097.

[38]  M. N. Rebelo,et al.  Theory and phenomenology of two-Higgs-doublet models , 2011, 1106.0034.

[39]  Hai-Bo Yu,et al.  Constraints on Light Majorana dark Matter from Colliders , 2010, 1005.1286.

[40]  T. Tait,et al.  Constraints on dark matter from colliders , 2010, 1008.1783.

[41]  J. Hisano,et al.  Gluon contribution to dark matter direct detection , 2010, 1007.2601.

[42]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[43]  Edward W. Kolb,et al.  Maverick dark matter at colliders , 2010, 1002.4137.

[44]  Chong-Sheng Li,et al.  Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC , 2009, 0912.4511.

[45]  V. Hankele,et al.  Vbfnlo: A parton level Monte Carlo for processes with electroweak bosons , 2008, Comput. Phys. Commun..

[46]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[47]  S. Meola,et al.  Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider , 2008 .

[48]  Jonathan L. Feng,et al.  Lower limit on dark matter production at the CERN Large Hadron Collider. , 2005, Physical review letters.

[49]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[50]  D0 Collaboration Search for Large Extra Dimensions in the Monojet + Missing ET Channel at D0 , 2003, hep-ex/0302014.