Projector-splines in the numerical solution of inetgro-differential equations☆
暂无分享,去创建一个
M. G. Cimoroni | L. Gori | E. Santi | L. Gori | E. Santi
[1] W. Hackbusch. Singular Integral Equations , 1995 .
[2] Carl de Boor,et al. On uniform approximation by splines , 1968 .
[3] S. Prössdorf,et al. On spline Galerkin methods for singular integral equations with piecewise continuous coefficients , 1986 .
[4] P. Rabinowitz,et al. On the uniform convergence of Cauchy principal values of quasi-interpolating splines , 1995 .
[5] M. Golberg. Introduction to the Numerical Solution of Cauchy Singular Integral Equations , 1990 .
[6] Philip Rabinowitz,et al. On the numerical solution of the generalized Prandtl equation using variation-diminishing splines , 1995 .
[7] P. Rabinowitz. Uniform convergence results for Cauchy principal value integrals , 1991 .
[8] P. Rabinowitz. Application of approximating splines for the solution of Cauchy singular integral equations , 1994 .
[9] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[10] Erica Jen,et al. Cubic splines and approximate solution of singular integral equations , 1981 .
[11] Walter Gautschi,et al. Computing the Hilbert transform of a Jacobi weight function , 1987 .
[12] E. Santi,et al. Local spline approximation methods for singular product integration , 1996 .
[13] V. Demichelis. The use of modified quasi-interpolatory splines for the solution of the Prandtl equation , 1995 .
[14] A. Palamara Orsi,et al. Spline approximation for Cauchy principal value integrals , 1990 .
[15] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.