Projector-splines in the numerical solution of inetgro-differential equations☆

We consider a method based on projector-splines for the numerical solution of the Prandtl equation; the CPV integral appearing in the equation is approximated by a suitable quad- rature rule based on projector-splines. Necessary conditions are established for the approximate solution of the equation to converge to the exact solution.

[1]  W. Hackbusch Singular Integral Equations , 1995 .

[2]  Carl de Boor,et al.  On uniform approximation by splines , 1968 .

[3]  S. Prössdorf,et al.  On spline Galerkin methods for singular integral equations with piecewise continuous coefficients , 1986 .

[4]  P. Rabinowitz,et al.  On the uniform convergence of Cauchy principal values of quasi-interpolating splines , 1995 .

[5]  M. Golberg Introduction to the Numerical Solution of Cauchy Singular Integral Equations , 1990 .

[6]  Philip Rabinowitz,et al.  On the numerical solution of the generalized Prandtl equation using variation-diminishing splines , 1995 .

[7]  P. Rabinowitz Uniform convergence results for Cauchy principal value integrals , 1991 .

[8]  P. Rabinowitz Application of approximating splines for the solution of Cauchy singular integral equations , 1994 .

[9]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[10]  Erica Jen,et al.  Cubic splines and approximate solution of singular integral equations , 1981 .

[11]  Walter Gautschi,et al.  Computing the Hilbert transform of a Jacobi weight function , 1987 .

[12]  E. Santi,et al.  Local spline approximation methods for singular product integration , 1996 .

[13]  V. Demichelis The use of modified quasi-interpolatory splines for the solution of the Prandtl equation , 1995 .

[14]  A. Palamara Orsi,et al.  Spline approximation for Cauchy principal value integrals , 1990 .

[15]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.