Geometrical Connection Between the VFM and the JWKB Method
暂无分享,去创建一个
[1] G. Arteca,et al. Eigenvalues of anharmonic oscillators from a variational functional method , 1984 .
[2] G. Arteca,et al. Analytical expressions for the eigenvalues of anharmonic oscillators , 1983 .
[3] M. Oprysko,et al. Argon ion laser excitation of supersonic seeded molecular beams of I2 , 1983 .
[4] E. Castro,et al. Comments about energies of parameter-dependent systems , 1983 .
[5] E. Castro,et al. Scaling-variational treatment of anharmonic oscillators , 1983 .
[6] J. Gallas,et al. Solution of the Schrödinger equation for bound states in closed form , 1982 .
[7] K. Banerjee. The Schrödinger equation: total interaction as perturbation , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[8] H. Gersch,et al. Approximate energy levels and sizes of bound quantum systems , 1982 .
[9] A. B. Henriques,et al. Quarkonia with a variational method , 1981 .
[10] G. Rosen. Solutional method for the energies of a parameter-dependent system , 1979 .
[11] I. Stamatescu,et al. Baryon spectrum and the forces between quarks , 1979 .
[12] K. Banerjee,et al. General anharmonic oscillators , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] Michael V Berry,et al. Semiclassical approximations in wave mechanics , 1972 .