Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12

[1]  C. Perottoni,et al.  First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. , 2012, Physical review letters.

[2]  Qiang Sun,et al.  Theoretical study of negative thermal expansion mechanism of ZnF2 , 2012 .

[3]  B. Fultz,et al.  Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. , 2011, Physical review letters.

[4]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[5]  J. Rodríguez-Carvajal,et al.  Structural investigation of the negative thermal expansion in yttrium and rare earth molybdates , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Zushu Hu,et al.  Crystal structure and negative thermal expansion of solid solution Y2W3−xMoxO12 , 2011, Journal of Materials Science.

[7]  F. Ferreira,et al.  In2Mo3O12: A low negative thermal expansion compound , 2010 .

[8]  Dongfeng Chen,et al.  Thermal expansion properties of Ln2−xCrxMo3O12 (Ln = Er and Y) , 2009 .

[9]  C. Smith,et al.  Negative thermal expansion: a review , 2009 .

[10]  Michel B. Johnson,et al.  Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O12 and Related Materials , 2009 .

[11]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Yi-jian Jiang,et al.  Low-frequency phonon modes and negative thermal expansion in A(MO(4))(2) (A = Zr, Hf and M = W, Mo) by Raman and Terahertz time-domain spectroscopy. , 2008, The journal of physical chemistry. A.

[13]  F. Ferreira,et al.  Low positive thermal expansion in HfMgMo3O12 , 2008 .

[14]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[15]  Junping Wang,et al.  Effect of Water Species on the Phonon Modes in Orthorhombic Y2(MoO4)3 Revealed by Raman Spectroscopy , 2008 .

[16]  A. Umarji,et al.  Negative thermal expansion in rare earth molybdates , 2006 .

[17]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[18]  F. Rizzo,et al.  Negative thermal expansion in Y2Mo3O12 , 2005 .

[19]  M. Ma̧czka,et al.  Phase transition and vibrational properties of A2(BO4)3 compounds (A=Sc, In; B=Mo, W) , 2005 .

[20]  N. Allan,et al.  Negative thermal expansion , 2005 .

[21]  A. K. Tyagi,et al.  Phase transition and negative thermal expansion in A2(MoO4)3 system (A=Fe3+, Cr3+ and Al3+) , 2002 .

[22]  R. Mittal,et al.  Origin of negative thermal expansion in cubic ZrW2O8 revealed by high pressure inelastic neutron scattering. , 2001 .

[23]  John S. O. Evans,et al.  Structural phase transitions and negative thermal expansion in Sc2(MoO4)3 , 2000 .

[24]  A. Sleight,et al.  Negative thermal expansion in Y2W3O12 , 1999 .

[25]  Martin T. Dove,et al.  Geometrical Origin and Theory of Negative Thermal Expansion in Framework Structures , 1999 .

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  V. Heine,et al.  Negative thermal expansion in beta-quartz , 1998 .

[28]  G. Kowach,et al.  Phonon density of states and negative thermal expansion in ZrW2O8 , 1998, Nature.

[29]  A. Sleight,et al.  Enhanced Negative Thermal Expansion in Lu2W3O12 , 1998 .

[30]  G. Kowach,et al.  Large Low Temperature Specific Heat in the Negative Thermal Expansion Compound ZrW 2 O 8 , 1998 .

[31]  V. Heine,et al.  Origin of the negative thermal expansion in and , 1996 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  W. Harrison Crystal structures of paraelastic aluminum molybdate and ferric molybdate, β-Al2(MoO4)3 and β-Fe2(MoO4)3 , 1995 .

[35]  G. D. Price,et al.  The Grüneisen parameter — computer calculations via lattice dynamics , 1994 .

[36]  F. Murnaghan On the Theory of the Tension of an Elastic Cylinder. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. P. Wang,et al.  Rapid synthesis of A2(MoO4)3 (A = Y3+ and La3+)with a CO2 laser , 2009 .