Endogenous human microRNAs that suppress breast cancer metastasis

A search for general regulators of cancer metastasis has yielded a set of microRNAs for which expression is specifically lost as human breast cancer cells develop metastatic potential. Here we show that restoring the expression of these microRNAs in malignant cells suppresses lung and bone metastasis by human cancer cells in vivo. Of these microRNAs, miR-126 restoration reduces overall tumour growth and proliferation, whereas miR-335 inhibits metastatic cell invasion. miR-335 regulates a set of genes whose collective expression in a large cohort of human tumours is associated with risk of distal metastasis. miR-335 suppresses metastasis and migration through targeting of the progenitor cell transcription factor SOX4 and extracellular matrix component tenascin C. Expression of miR-126 and miR-335 is lost in the majority of primary breast tumours from patients who relapse, and the loss of expression of either microRNA is associated with poor distal metastasis-free survival. miR-335 and miR-126 are thus identified as metastasis suppressor microRNAs in human breast cancer.

[1]  Tumors , 1828, The London medical and physical journal.

[2]  H. Clevers,et al.  Sox‐4, an Sry‐like HMG box protein, is a transcriptional activator in lymphocytes. , 1993, The EMBO journal.

[3]  H. Snodgrass,et al.  Cloning and developmental expression analysis of the murine c-mer tyrosine kinase. , 1995, Oncogene.

[4]  Stephen Pulman,et al.  Building the Framework , 1996 .

[5]  A. Cumano,et al.  Sox‐4 facilitates thymocyte differentiation , 1997, European journal of immunology.

[6]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[7]  I. Fidler,et al.  The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited , 2003, Nature Reviews Cancer.

[8]  P. Steeg Metastasis suppressors alter the signal transduction of cancer cells , 2003, Nature Reviews Cancer.

[9]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[10]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[11]  C. Croce,et al.  MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. El-Karef,et al.  Co‐stimulation of human breast cancer cells with transforming growth factor‐β and tenascin‐C enhances matrix metalloproteinase‐9 expression and cancer cell invasion , 2004, International journal of experimental pathology.

[13]  J. Peterse,et al.  Breast cancer metastasis: markers and models , 2005, Nature Reviews Cancer.

[14]  G. Rutter,et al.  Myosin Va Transports Dense Core Secretory Vesicles in Pancreatic MIN6 β-Cells , 2005 .

[15]  S. Horvath,et al.  Global histone modification patterns predict risk of prostate cancer recurrence , 2005, Nature.

[16]  Andy J. Minn,et al.  Genes that mediate breast cancer metastasis to lung , 2005, Nature.

[17]  Olivier Elemento,et al.  Revealing Posttranscriptional Regulatory Elements Through Network-Level Conservation , 2005, PLoS Comput. Biol..

[18]  K. Livak,et al.  Real-time quantification of microRNAs by stem–loop RT–PCR , 2005, Nucleic acids research.

[19]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[20]  Cheryl Regehr,et al.  BUILDING A FRAMEWORK , 2005 .

[21]  W. Gerald,et al.  Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. , 2005, The Journal of clinical investigation.

[22]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[23]  G. Rutter,et al.  Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. , 2005, Molecular biology of the cell.

[24]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[25]  Roger R. Gomis,et al.  C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells , 2006 .

[26]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[27]  J. Massagué,et al.  Cancer Metastasis: Building a Framework , 2006, Cell.

[28]  R. Chiquet‐Ehrismann,et al.  Tenascin-C induced signaling in cancer. , 2006, Cancer letters.

[29]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[30]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[31]  M. Wegner,et al.  Prolonged Glial Expression of Sox4 in the CNS Leads to Architectural Cerebellar Defects and Ataxia , 2007, The Journal of Neuroscience.

[32]  L. Coussens,et al.  Type I collagen is a genetic modifier of matrix metalloproteinase 2 in murine skeletal development , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[33]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[34]  Paula D. Bos,et al.  Mediators of vascular remodelling co-opted for sequential steps in lung metastasis , 2007, Nature.

[35]  J. Nevins,et al.  Mining gene expression profiles: expression signatures as cancer phenotypes , 2007, Nature Reviews Genetics.

[36]  J. Massagué,et al.  Genetic determinants of cancer metastasis , 2007, Nature Reviews Genetics.

[37]  George Poste,et al.  The "seed and soil" hypothesis revisited. , 2008, The Lancet. Oncology.

[38]  C. Kozak,et al.  Genetic mapping of the human and mouse phospholipase C genes , 1996, Mammalian Genome.