Physical and geometrical optics for 2-D rough surfaces with power-law height spectra

Random rough surfaces with slowly decaying power spectral density can have infinite slope variance. Such surfaces do not satisfy the classical curvature criterion for validity of the physical optics (PO) approximation, and the infinite frequency geometrical optics limit or specular point scattering model breaks down. We show for two-dimensional surfaces with infinite slope variance that the Gaussian form of the classical geometrical limit generalizes to a stable distribution function. We also show that the PO integral is insensitive to surface components with spatial frequency above a cutoff wavenumber, which explains past observations that PO can be accurate for surfaces with power law spectra. This result leads to a general validity condition for the PO approximation in the backscattering direction for power-law surfaces, which in the case of a k/sup -4/ spectrum requires that the significant slope of the surface be less than 0.03.

[1]  Ernesto Rodriguez,et al.  The effect of small-wave modulation on the electromagnetic bias , 1992 .

[2]  A. Fung,et al.  Numerical computation of scattering from a perfectly conducting random surface , 1978 .

[3]  A. Purcell,et al.  ASYMPTOTIC EXPANSION OF THE BACKSCATTERING STRENGTH FOR THE PIERSON MOSKOWITZ SEA SURFACE , 2001 .

[4]  Stephen L. Durden,et al.  A numerical assessment of rough surface scattering theories: Horizontal polarization , 1992 .

[5]  I. Simonsen,et al.  Electromagnetic wave scattering from conducting self-affine surfaces: an analytic and numerical study. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  D. Milder,et al.  An improved formalism for electromagnetic scattering from a perfectly conducting rough surface , 1996 .

[7]  Darrell R. Jackson,et al.  Studies of scattering theory using numerical methods , 1991 .

[8]  E. Rodríguez,et al.  Beyond the Kirchhoff approximation , 1989 .

[9]  W. Chew,et al.  Numerical simulation methods for rough surface scattering , 2001 .

[10]  J. Zinn,et al.  Central limit problem for symmetric case: Convergence to non-Gaussian laws , 1980 .

[11]  David V. Arnold Electromagnetic bias in radar altimetry at microwave frequencies , 1992 .

[12]  E. Thorsos,et al.  An investigation of the small slope approximation for scattering from rough surfaces. Part II. Numerical studies , 1997 .

[13]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[15]  Karl F. Warnick,et al.  Generalization of the geometrical optics scattering limit for a rough conducting surface , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[16]  Donald E. Barrick,et al.  A Review of Scattering From Surfaces With Different Roughness Scales , 1968 .

[17]  A. Maradudin,et al.  Multiple Scattering of Waves from Random Rough Surfaces , 1980 .

[18]  Yunjin Kim,et al.  A unified perturbation expansion for surface scattering , 1992 .

[19]  David H. Berman,et al.  The Kirchhoff approximation and first‐order perturbation theory for rough surface scattering , 1985 .

[20]  Anne Sentenac,et al.  TOPICAL REVIEW: Rigorous solutions for electromagnetic scattering from rough surfaces , 2001 .

[21]  M. Saillard,et al.  Rigorous solutions for electromagnetic scattering from rough surfaces , 2001 .

[22]  Weng Cho Chew,et al.  A multilevel algorithm for solving a boundary integral equation of wave scattering , 1994 .

[23]  Coherent scattering by one-dimensional randomly rough metallic surfaces. , 1998, Applied optics.

[24]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[25]  K. Katsaros,et al.  A Unified Directional Spectrum for Long and Short Wind-Driven Waves , 1997 .

[26]  J. C. Leader Bidirectional Scattering of Electromagnetic Waves from Rough Surfaces , 1971 .

[27]  V. I. Tatarskii,et al.  Statistical description of rough-surface scattering using the quasi-small-slope approximation for random surfaces with a Gaussian multivariate probability distribution , 1994 .

[28]  G. Valenzuela,et al.  Depolarization of EM waves by slightly rough surfaces , 1967 .

[29]  A. Voronovich Wave Scattering from Rough Surfaces , 1994 .

[30]  Akira Ishimaru,et al.  The Phase Perturbation Technique vs. an Exact Numerical Method for Random Rough Surface Scattering , 1989 .

[31]  Janos Galambos,et al.  Advanced probability theory , 1988 .

[32]  J. Kuelbs,et al.  Domains of Attraction of Stable Measures on a Hilbert Space. , 1974 .

[33]  G. Leonard Tyler,et al.  Wavelength dependence in radio-wave scattering and specular-point theory , 1976 .

[34]  G. Brown,et al.  Backscattering from a Gaussian-distributed perfectly conducting rough surface , 1978 .

[35]  Norden E. Huang,et al.  On the Importance of the Significant Slope in Empirical Wind-Wave Studies , 1981 .

[36]  G. J. St-Cyr,et al.  A radar ocean imaging model for small to moderate incidence angles , 1986 .

[37]  J. C. Dainty,et al.  Theory of Wave Scattering from Random Rough Surfaces , 1991 .

[38]  Joel T. Johnson,et al.  Third-order small-perturbation method for scattering from dielectric rough surfaces , 1999 .

[39]  Stephen L. Durden,et al.  A numerical assessment of rough surface scattering theories. I - Horizontal polarization. II - Vertical polarization , 1992 .

[40]  A. Fung,et al.  Backscattering of waves by composite rough surfaces , 1969 .

[41]  D. Jackson,et al.  The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum , 1988 .

[42]  A. Voronovich Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric , 1994 .

[43]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .