Spin ordering: two different scenarios for the single and double layer structures in the fractional and integer quantum Hall effect regimes

We investigate the ground state competition at the transition from the spin unpolarized to spin ordered phase at filling factor ν =2/3 in single layer heterostructure and at ν =2 in double layer quantum well. To trace the quantum Hall phase we use the minimum in the dissipative conductivity σ xx We observe two different transition scenarios in two investigated situations. For one of them we propose a qualitative explanation, based on the domain structure evolution in the vicinity of the transition point. The origin for the second scenario, corresponding to the experimental situation at ν =2 in double layer quantum well, still remains unclear. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  E. Shangina,et al.  Quantum phase transitions in two-dimensional systems , 2003 .

[2]  A. Lorke,et al.  Separately contacted edge states: A spectroscopic tool for the investigation of the quantum Hall effect , 2001, cond-mat/0108186.

[3]  G. Abstreiter,et al.  Ising ferromagnetism and domain morphology in the fractional quantum Hall regime. , 2001, Physical review letters.

[4]  T. Vojta Quantum phase transitions in electronic systems , 1999, Annalen der Physik.

[5]  A. Gossard,et al.  Canted antiferromagnetic phase in a double quantum well in a tilted quantizing magnetic field. , 1999, Physical review letters.

[6]  T. Jungwirth,et al.  Broken-symmetry ground states in ν=2 bilayer quantum Hall systems , 1999, cond-mat/9903318.

[7]  S. Sarma,et al.  Electromodulation of the bilayered nu =2 quantum Hall phase diagram , 1999, cond-mat/9901296.

[8]  S. Sarma,et al.  Spin Bose-glass phase in bilayer quantum Hall systems at nu=2 , 1998, cond-mat/9811047.

[9]  West,et al.  Evidence of soft-mode quantum phase transitions in electron double layers , 1998, Science.

[10]  S. Sarma,et al.  Canted antiferromagnetic and spin singlet quantum Hall states in double-layer systems , 1997, cond-mat/9709315.

[11]  A. Gossard,et al.  WAVE FUNCTION SPECTROSCOPY IN QUANTUM WELLS WITH TUNABLE ELECTRON DENSITY , 1997 .

[12]  A. Gossard,et al.  EVIDENCE FOR A SPIN TRANSITION IN THE V=2/5 FRACTIONAL QUANTUM HALL EFFECT , 1997 .

[13]  S. Sarma,et al.  DOUBLE-LAYER QUANTUM HALL ANTIFERROMAGNETISM AT FILLING FRACTION V = 2/M WHERE M IS AN ODD INTEGER , 1997, cond-mat/9701142.

[14]  K. West,et al.  Collapse of Spin Excitations in Quantum Hall States of Coupled Electron Double Layers , 1997 .

[15]  A. Gossard,et al.  The effect of resonant sublevel coupling on intersubband transitions in coupled double quantum wells , 1996 .

[16]  Tsui,et al.  Fractional quantum Hall effect at nu =2/3 and 3/5 in tilted magnetic fields. , 1992, Physical review. B, Condensed matter.

[17]  Macdonald,et al.  Collapse of integer Hall gaps in a double-quantum-well system. , 1990, Physical review letters.

[18]  Chakraborty,et al.  Spin-reversed excitations in the fractional quantum Hall effect. , 1990, Physical review. B, Condensed matter.

[19]  West,et al.  Evidence for a spin transition in the nu =2/3 fractional quantum Hall effect. , 1990, Physical review. B, Condensed matter.

[20]  Guo,et al.  Fractional quantum Hall effect with spin reversal. , 1989, Physical review. B, Condensed matter.

[21]  Jain,et al.  Composite-fermion approach for the fractional quantum Hall effect. , 1989, Physical review letters.

[22]  B. Halperin Theory of the quantized Hall conductance , 1983 .