Coherent coupling of molecular resonators with a microcavity mode

[1]  T. Ebbesen,et al.  Phase transition of a perovskite strongly coupled to the vacuum field. , 2014, Nanoscale.

[2]  T. Ebbesen,et al.  Quantum Yield of Polariton Emission from Hybrid Light-Matter States. , 2014, The journal of physical chemistry letters.

[3]  Ullrich Scherf,et al.  Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. , 2014, Nature materials.

[4]  S. A. Maier,et al.  Nonlinear interactions in an organic polariton condensate , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[5]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[6]  Eloïse Devaux,et al.  Thermodynamics of molecules strongly coupled to the vacuum field. , 2013, Angewandte Chemie.

[7]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[8]  T. Ebbesen,et al.  Tuning the Work‐Function Via Strong Coupling , 2013, Advanced materials.

[9]  C. Manzoni,et al.  Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates , 2013, Nature Photonics.

[10]  T. Ebbesen,et al.  Polariton dynamics under strong light-molecule coupling. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  B. Stuhl,et al.  Evaporative cooling of the dipolar hydroxyl radical , 2012, Nature.

[12]  Jun Ye,et al.  Introduction to ultracold molecules: new frontiers in quantum and chemical physics. , 2012, Chemical reviews.

[13]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[14]  T. Ebbesen,et al.  Modifying chemical landscapes by coupling to vacuum fields. , 2012, Angewandte Chemie.

[15]  Oskar Painter,et al.  Observation of quantum motion of a nanomechanical resonator. , 2012, Physical review letters.

[16]  Y. Gartstein,et al.  Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. , 2011, Physical review letters.

[17]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[18]  H. Siesler Vibrational Spectroscopy of Polymers , 2011 .

[19]  P. Offermans,et al.  Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons. , 2011, ACS nano.

[20]  Y. Gartstein,et al.  Hybrid resonant organic-inorganic nanostructures for optoelectronic applications. , 2011, Chemical reviews.

[21]  D. Hunger,et al.  Realization of an optomechanical interface between ultracold atoms and a membrane. , 2011, Physical review letters.

[22]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[23]  T. Ebbesen,et al.  Reversible switching of ultrastrong light-molecule coupling , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[24]  Hao Zhang,et al.  Optomechanical cavity cooling of an atomic ensemble. , 2011, Physical review letters.

[25]  G. J. Milburn,et al.  Pulsed quantum optomechanics , 2010, Proceedings of the National Academy of Sciences.

[26]  Michael R. Vanner,et al.  Phonon-tunnelling dissipation in mechanical resonators , 2010, Nature communications.

[27]  J. Barry,et al.  Laser cooling of a diatomic molecule , 2010, Nature.

[28]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[29]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[30]  Jun Ye,et al.  Cold and ultracold molecules: science, technology and applications , 2009, 0904.3175.

[31]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[32]  M. Pettersson,et al.  Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. , 2009, Physical review letters.

[33]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[34]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[35]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[36]  D. Stamper-Kurn,et al.  Observation of quantum-measurement backaction with an ultracold atomic gas , 2007, 0706.1005.

[37]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[38]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[39]  C. Lévi-Strauss,et al.  Experimental investigation , 2013 .

[40]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[41]  K. Vahala,et al.  Radiation-pressure-driven micro-mechanical oscillator , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[42]  Bruce A. Garett Molecular Light Scattering and Optical Activity, 2nd ed , 2005 .

[43]  Kurt Oughstun,et al.  On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion. , 2003, Optics express.

[44]  J. Koenig Chapter 5 – Raman spectroscopy of polymers , 1999 .

[45]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[46]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[47]  Stanley,et al.  Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[48]  Kevin Brownlow,et al.  In the First Place , 1995 .

[49]  W. Schleich,et al.  Fundamental Systems in Quantum Optics , 1995 .

[50]  B. Liu,et al.  [Effect of BN52021 on platelet activating factor induced aggregation of psoriatic polymorphonuclear neutrophils]. , 1994, Zhonghua yi xue za zhi.

[51]  K. Hirokawa,et al.  Fourier transform infrared emission spectra of poly(vinyl acetate) enhanced by the island structure of gold , 1994 .

[52]  P. Knight Fundamental Systems in Quantum Optics , 1993 .

[53]  Jack L. Koenig,et al.  Spectroscopy of Polymers , 1992 .

[54]  J. Raimond,et al.  Observation of Self-Induced Rabi Oscillations in Two-Level Atoms Excited Inside a Resonant Cavity: The Ringing Regime of Superradiance , 1983 .

[55]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[56]  A. Brillante,et al.  Exciton–surface plasmon coupling: An experimental investigation , 1982 .

[57]  U. Kreibig,et al.  Electronic properties of small silver particles: the optical constants and their temperature dependence , 1974 .

[58]  Matthias Born,et al.  Principles of Optics: Electromagnetic Theory of Propa-gation, Interference and Di raction of Light , 1999 .

[59]  Barnett,et al.  Supplementary References , 2022 .