Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing

The negatively-charged nitrogen-vacancy colour centre in diamond has long been identified as a platform for quantum computation. However, despite beautiful proof of concept experiments, a pathway to true scalability has proven elusive. Now a group from Oxford and Grenoble-Alpes have shown coupling between nitrogen-vacancy centres and open Fabry-Perot cavities in a way that proves a clear route to scalable quantum computing (Johnson et al 2015 New J. Phys. 17 122003). And all at the relatively balmy temperature of 77 K.

[1]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[2]  M. Doherty,et al.  All-optical thermometry and thermal properties of the optically detected spin resonances of the NV(-) center in nanodiamond. , 2014, Nano letters.

[3]  Christoph Pauly,et al.  Narrow-band single photon emission at room temperature based on a single Nitrogen-vacancy center coupled to an all-fiber-cavity , 2014, 1407.5825.

[4]  Lukin,et al.  Quantum entanglement via optical control of atom-atom interactions , 2000, Physical review letters.

[5]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[6]  D. Clarke,et al.  Fabrication of thin, luminescent, single-crystal diamond membranes , 2011, 1108.0738.

[7]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[8]  C. Becher,et al.  Coupling of a single N-V center in diamond to a fiber-based microcavity , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[9]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[10]  A. Trichet,et al.  Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond , 2015, 1506.05161.

[11]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[12]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[13]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[14]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[15]  L. Hollenberg,et al.  Scanning quantum decoherence microscopy , 2008, Nanotechnology.

[16]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[17]  M. Shahriar,et al.  Solid State Quantum Computing Using Spectral Holes , 2000, quant-ph/0007074.

[18]  Kae Nemoto,et al.  Deterministic optical quantum computer using photonic modules , 2008 .

[19]  L. Hollenberg,et al.  Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[20]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[21]  Andrew D Greentree,et al.  Towards a picosecond transform-limited nitrogen-vacancy based single photon source. , 2007, Optics express.

[22]  M. Plenio,et al.  Arrays of waveguide-coupled optical cavities that interact strongly with atoms , 2011, 1109.0886.

[23]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[24]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[25]  A. Reiserer,et al.  Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond. , 2015, Faraday discussions.

[26]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[27]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[28]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.