Temperature dependence of the surface plasmon resonance in gold nanoparticles

Abstract The temperature dependences of energy and width of the surface plasmon resonance were studied for gold nanoparticles with sizes 20–55 nm in silica host matrix in the temperature range 17–915 °С. The increase of temperature leads to appreciable red shift and broadening of the surface plasmon resonance in Au nanoparticles. The obtained dependences were analyzed within the framework of theoretical model considering the thermal expansion of the nanoparticle, the electron–phonon scattering in the nanoparticle and the temperature dependence of dielectric permittivity of the host matrix. The thermal expansion was shown to be the main mechanism responsible for the temperature induced red shift of the surface plasmon resonance in gold nanoparticles. The thermal volume expansion coefficient for Au nanoparticles was found to be size-independent in the studied size range. Meanwhile, the increase of electron–phonon scattering rate with increasing temperature was shown to be the dominant mechanism of the surface plasmon resonance broadening in the gold nanoparticles.

[1]  N. Grigorchuk,et al.  Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect , 2011, 1107.2866.

[2]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[3]  T. A. Taton Nanoscale Materials in Chemistry Edited by Kenneth J. Klabunde (Kansas State University). Wiley-Interscience: New York. 2001. xi + 292 pp. $99.95. ISBN: 0-471-38395-3. , 2002 .

[4]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[5]  John T. Neu,et al.  Refractive index of several glasses as a function of wavelength and temperature. , 1969 .

[6]  Anatoly V Zayats,et al.  Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits. , 2012, Nano letters.

[7]  A. Henglein,et al.  Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions , 1993 .

[8]  D. Citrin Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled. , 2005, Nano letters.

[9]  Jennifer Sturgis,et al.  A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. , 2007, Nano letters.

[10]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[11]  A. Hohenau,et al.  Probing surface plasmon fields by far‐field Raman imaging , 2008, Journal of microscopy.

[12]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[13]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[14]  S. Bozhevolnyi,et al.  Long-range surface plasmon polariton nanowire waveguides for device applications. , 2006, Optics express.

[15]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Kittel Introduction to solid state physics , 1954 .

[17]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[18]  Zhao Ya-pu,et al.  Size- and Temperature-Dependent Thermal Expansion Coefficient of a Nanofilm , 2009 .

[19]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[20]  Anatoliy O. Pinchuk,et al.  Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica , 2009 .

[21]  U. Kreibig,et al.  Electronic properties of small silver particles: the optical constants and their temperature dependence , 1974 .

[22]  V. Zhdanov,et al.  LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. , 2010, Nano letters.

[23]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[24]  Wayne Dickson,et al.  Low-temperature plasmonics of metallic nanostructures. , 2012, Nano letters.

[25]  Bartosz A Grzybowski,et al.  Molecular dynamics imaging in micropatterned living cells , 2005, Nature Methods.

[26]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding , 2007 .

[27]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[28]  Anatoliy O. Pinchuk,et al.  Size and Temperature Effects on the Surface Plasmon Resonance in Silver Nanoparticles , 2012, Plasmonics.

[29]  Linyou Cao,et al.  Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. , 2007, Nano letters.

[30]  R. Doremus Optical Properties of Small Gold Particles , 1964 .

[31]  Kikuo Ujihara Reflectivity of Metals at High Temperatures , 1972 .

[32]  Naomi J Halas,et al.  Immunonanoshells for targeted photothermal ablation of tumor cells , 2006, International journal of nanomedicine.

[33]  A. A. Alexeenko,et al.  Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix , 2007 .

[34]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[35]  H. Lezec,et al.  Atomic fluorescence mapping of optical field intensity profiles issuing from nanostructured slits, milled into subwavelength metallic layers , 2005 .

[36]  S. Schrader,et al.  Influence of interparticle interaction on melting of gold nanoparticles in Au/polytetrafluoroethylene nanocomposites , 2009 .

[37]  Richard H. Bube,et al.  Electrons in Solids: An Introductory Survey , 2012 .

[38]  Vladimir M. Shalaev,et al.  Enhanced localized fluorescence in plasmonic nanoantennae , 2008 .

[39]  K. Klabunde,et al.  Nanoscale materials in chemistry , 2001 .

[40]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[41]  I. Dmitruk,et al.  Surface plasmon as a probe for melting of silver nanoparticles , 2010, Nanotechnology.

[42]  G. Wiederrecht,et al.  Near-field photochemical imaging of noble metal nanostructures. , 2005, Nano letters.

[43]  K. M. Koliwad,et al.  Morse-Potential Evaluation of Second- and Third-Order Elastic Constants of Some Cubic Metals , 1967 .

[44]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[45]  U. Kreibig,et al.  Interface-induced dephasing of Mie plasmon polaritons , 2008 .

[46]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[47]  A. Henglein Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition , 1993 .

[48]  R. Doremus Optical Properties of Small Silver Particles , 1965 .