Supersymmetric bracket algebra and invariant theory

In this section we review some definitions and results in Ref. 9, pp 1–11. Roughly speaking, the supersymmetric algebra is a generalization of the ordinary algebra of polynomials in a set L of variables. Our variables shall be of two kinds: positively signed and negatively signed L=L +∪L −.

[1]  Gian-Carlo Rota,et al.  On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .

[2]  G C Rota,et al.  Supersymmetric Hilbert space. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. E. Littlewood,et al.  Invariant theory, tensors and group characters , 1944, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  G. Stein,et al.  Membrane-associated inhibitor of DNA synthesis in senescent human diploid fibroblasts: characterization and comparison to quiescent cell inhibitor. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Neil L. White,et al.  Multilinear Cayley Factorization , 1991, J. Symb. Comput..

[6]  W. Whiteley Logic and invariant theory. I. Invariant theory of projective properties , 1973 .

[7]  Gian-Carlo Rota,et al.  On the Exterior Calculus of Invariant Theory , 1985 .

[8]  Neil L. White,et al.  The Dotted Straightening Algorithm , 1991, J. Symb. Comput..

[9]  Bernd Sturmfels,et al.  Grobner Bases and Invariant Theory , 1989 .

[10]  A Brini,et al.  Gordan-Capelli series in superalgebras. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Weyl The Classical Groups , 1939 .

[12]  H. W. Turnbull The projective invariants of four mediale , 1942 .

[13]  G C Rota,et al.  Standard basis in supersymplectic algebras. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Joseph P. S. Kung,et al.  Invariant theory, Young bitableaux, and combinatorics , 1978 .

[15]  A Brini,et al.  Young-Capelli symmetrizers in superalgebras. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Rota,et al.  The invariant theory of binary forms , 1984 .

[17]  G C Rota,et al.  Symbolic method in invariant theory. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Andrew H. Wallace Invariant Matrices and the Gordan-Capelli Series , 1952 .

[19]  Neil L. White,et al.  Cayley Factorization , 1988, ISSAC.

[20]  Gian-Carlo Rota,et al.  Invariant theory and superalgebras , 1987 .