Correction of Reflectance Anisotropy Effects of Vegetation on Airborne Spectroscopy Data and Derived Products

Directional effects in airborne imaging spectrometer (IS) data are mainly caused by anisotropic reflectance behavior of surfaces, commonly described by bi-directional reflectance distribution functions (BRDF). The radiometric and spectral accuracy of IS data is known to be highly influenced by such effects, which prevents consistent comparison of products. Several models were developed to approximate surface reflectance anisotropy for multi-angular observations. Few studies were carried out using such models for airborne flight lines where only a single observation is available for each ground location. In the present work, we quantified and corrected reflectance anisotropy on a single airborne HyMap flight line using a Ross-Li model. We stratified the surface in two vegetation structural types (different in vertical structuring) using spectral angle mapping, to generate a structure dependent set of angular observations. We then derived a suite of products [indices (structure insensitive pigment index, normalized difference vegetation index, simple ratio index, and anthocyanin reflectance index) and inversion-based (SAIL/PROSPECT-leaf area index, Cw, Cdm, Cab)] from corrected and uncorrected images. Non-parametric analysis of variance (Kruskal-Wallis test) showed throughout significant improvements in products from corrected images. Data correction resulting in airborne nadir BRDF adjusted reflectance (aNBAR) showed uncertainty reductions from 60 to 100% (p-value = 0.05) as compared to uncorrected and nadir observations. Using sparse IS data acquisitions, the use of fully parametrized BRDF models is limited. Our normalization scheme is straightforward and can be applied with illumination and observation geometry being the only a priori information. We recommend aNBAR generation to precede any higher level airborne IS product generation based on reflectance data.

[1]  Felix Morsdorf,et al.  Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling , 2009 .

[2]  F. Gao,et al.  Detecting vegetation structure using a kernel-based BRDF model , 2003 .

[3]  J. Morisette,et al.  Field and landscape BRDF optical wavelength measurements: Experience, techniques and the future , 2000 .

[4]  Gregory A. Carter,et al.  The use of hyperspectral remote sensing to assess vascular plant species richness on Horn Island, Mississippi , 2008 .

[5]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[6]  Peter J. Mouginis-Mark,et al.  Effects of viewing geometry on AVHRR observations of volcanic thermal anomalies , 1994 .

[7]  Alan H. Strahler,et al.  An analytical hybrid GORT model for bidirectional reflectance over discontinuous plant canopies , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Brent N. Holben,et al.  Directional reflectance response in AVHRR red and near-IR bands for three cover types and varying atmospheric conditions , 1986 .

[9]  Junichi Susaki,et al.  Robust estimation of BRDF model parameters , 2004 .

[10]  Robert L. Crabtree,et al.  Percent surface water estimation from MODIS BRDF 16-day image composites , 2011 .

[11]  M. Schaepman,et al.  Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data , 2008 .

[12]  Charles L. Walthall,et al.  A study of reflectance anisotropy and canopy structure using a simple empirical model , 1997 .

[13]  Nadine Gobron,et al.  Characterization of surface heterogeneity detected at the MISR/TERRA subpixel scale , 2001 .

[14]  Alan H. Strahler,et al.  Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar , 2011 .

[15]  T. Eck,et al.  Characterization of the reflectance anisotropy of three boreal forest canopies in spring-summer , 1999 .

[16]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[17]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[18]  K. Itten,et al.  Estimating foliar biochemistry from hyperspectral data in mixed forest canopy , 2008 .

[19]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[20]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[21]  Xiangming Xiao,et al.  Characterization of seasonal variation of forest canopy in a temperate deciduous broadleaf forest, using daily MODIS data , 2006 .

[22]  M. Rautiainen,et al.  Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data , 2008 .

[23]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[24]  Miina Rautiainen,et al.  Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data , 2012 .

[25]  Michael D. King,et al.  Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements , 2011 .

[26]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[27]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[28]  P. Bicheron A Method of Biophysical Parameter Retrieval at Global Scale by Inversion of a Vegetation Reflectance Model , 1999 .

[29]  Patrick Hostert,et al.  Correcting brightness gradients in hyperspectral data from urban areas , 2006 .

[30]  Felix Morsdorf,et al.  Tomographic processing of multi-baseline P-band SAR data for imaging of a forested area , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[31]  F. Gao,et al.  An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF , 2011 .

[32]  F. Gemmell,et al.  View Zenith Angle Effects on the Forest Information Content of Three Spectral Indices , 2000 .

[33]  Warren B. Cohen,et al.  A BRDF-RELATED BRIGHTNESS CRADIENT IN AVIRIS IMAGERY: LESSONS FROM AN EMPIRICAL COMPENSATION METHOD , 1998 .

[34]  Jean Dickinson Gibbons,et al.  Nonparametric Statistical Inference , 1972, International Encyclopedia of Statistical Science.

[35]  R. Jenssen,et al.  1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .

[36]  Alan H. Strahler,et al.  Validation of Kernel-Driven Semiempirical Models for the Surface Bidirectional Reflectance Distribution Function of Land Surfaces , 1997 .

[37]  D. Kimes Dynamics of directional reflectance factor distributions for vegetation canopies. , 1983, Applied optics.

[38]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[39]  Alan H. Strahler,et al.  A Comparison of Satellite-Derived Spectral Albedos to Ground-Based Broadband Albedo Measurements Modeled to Satellite Spatial Scale for a Semidesert Landscape , 2000 .

[40]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[41]  Shunlin Liang,et al.  Earth system science related imaging spectroscopy — an assessment , 2009 .

[42]  A. Strahler,et al.  Global clumping index map derived from the MODIS BRDF product , 2012 .

[43]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[44]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[45]  M. S. Moran,et al.  Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery , 1990 .

[46]  Michael E. Schaepman,et al.  Mapping LAI and chlorophyll content from at-sensor APEX data using a Bayesian optimisation of a coupled canopy-atmosphere model , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[47]  Mark Chopping,et al.  Testing a LiSK BRDF Model with in Situ Bidirectional Reflectance Factor Measurements over Semiarid Grasslands , 2000 .

[48]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[49]  A. Gitelson,et al.  Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves¶ , 2001, Photochemistry and photobiology.

[50]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[51]  Alan H. Strahler,et al.  Using a multikernel least-variance approach to retrieve and evaluate albedo from limited bidirectional measurements , 2001 .

[52]  C. Justice,et al.  A global 1° by 1° NDVI data set for climate studies derived from the GIMMS continental NDVI data , 1994 .

[53]  Alan H. Strahler,et al.  A new class of geometric-optical semiempirical kernels for global BRDF and albedo modeling , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[54]  Warren B. Cohen,et al.  Empirical methods to compensate for a view-angle-dependent brightness gradient in AVIRIS imagery☆ , 1997 .

[55]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[56]  Chad J. Shuey,et al.  Validating MODIS land surface reflectance and albedo products: methods and preliminary results , 2002 .

[57]  Jean-Philippe Gastellu-Etchegorry,et al.  Modeling BRF and Radiation Regime of Boreal and Tropical Forests: I. BRF , 1999 .

[58]  Nadine Gobron,et al.  Horizontal radiation transport in 3-D forest canopies at multiple spatial resolutions: Simulated impact on canopy absorption , 2006 .

[59]  Alan H. Strahler,et al.  Modeling bidirectional reflectance of forests and woodlands using boolean models and geometric optics , 1990 .

[60]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[61]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[62]  Susan L Ustin,et al.  Remote sensing of plant functional types. , 2010, The New phytologist.

[63]  M. Schaepman,et al.  Assessing and predicting biodiversity in a floodplain ecosystem: Assimilation of net primary production derived from imaging spectrometer data into a dynamic vegetation model , 2008 .

[64]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[65]  Michael E. Schaepman,et al.  Shoot scattering phase function for Scots pine and its effect on canopy reflectance , 2012 .

[66]  Peter Caccetta,et al.  Techniques for BRDF Correction of Hyperspectral Mosaics , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[67]  F. Maignan,et al.  Bidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot , 2004 .

[68]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .