Nonlinear modeling, estimation and predictive control in APMonitor

This paper describes nonlinear methods in model building, dynamic data reconciliation, and dynamic optimization that are inspired by researchers and motivated by industrial applications. A new formulation of the l1-norm objective with a dead-band for estimation and control is presented. The dead-band in the objective is desirable for noise rejection, minimizing unnecessary parameter adjustments and movement of manipulated variables. As a motivating example, a small and well-known nonlinear multivariable level control problem is detailed that has a number of common characteristics to larger controllers seen in practice. The methods are also demonstrated on larger problems to reveal algorithmic scaling with sparse methods. The implementation details reveal capabilities of employing nonlinear methods in dynamic applications with example code in both Matlab and Python programming languages.

[1]  L. Biegler,et al.  Decomposition algorithms for on-line estimation with nonlinear DAE models , 1995 .

[2]  Francis J. Doyle,et al.  Distributed model predictive control of an experimental four-tank system , 2007 .

[3]  Kody M. Powell,et al.  Modeling and control of a solar thermal power plant with thermal energy storage , 2012 .

[4]  Michael Nikolaou,et al.  Robust stability analysis of constrained l1‐norm model predictive control , 1993 .

[5]  Karl Henrik Johansson,et al.  Interaction bounds in multivariable control systems , 1999, Autom..

[6]  John D. Hedengren,et al.  MOVING HORIZON ESTIMATION FOR AN INDUSTRIAL GAS PHASE POLYMERIZATION REACTOR , 2007 .

[7]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[8]  Jean Utke,et al.  Advances in automatic differentiation : with 37 tables; Fifth International Conference on Automatic Differentiation, August 11 to 15, 2008 in Bonn, Germany / Christian H. Bischof ... eds. , 2008 .

[9]  Randal W. Beard,et al.  Optimal Trajectory Generation Using Model Predictive Control for Aerially Towed Cable Systems , 2014 .

[10]  J.D. Hedengren,et al.  Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor , 2007, 2007 American Control Conference.

[11]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[12]  Manfred Morari,et al.  Modeling and identification of a large multi-zone office building , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[13]  John D. Hedengren,et al.  Model predictive control with a rigorous model of a Solid Oxide Fuel Cell , 2013, 2013 American Control Conference.

[14]  Thomas F. Edgar,et al.  Constrained Nonlinear Estimation for Industrial Process Fouling , 2010 .

[15]  John D. Hedengren,et al.  Advanced Deepwater Monitoring System , 2013 .

[16]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[17]  Lorenz T. Biegler,et al.  Decomposition algorithms for on-line estimation with nonlinear models , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[18]  Michael Nikolaou,et al.  MPC: Current practice and challenges , 2012 .

[19]  J. Mixter Fast , 2012 .

[20]  John D. Hedengren,et al.  NEW CAPABILITIES FOR LARGE-SCALE MODELS IN COMPUTATIONAL BIOLOGY , 2012 .

[21]  H. J. Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[22]  R. Mahadevan,et al.  A partial flatness approach to nonlinear moving horizon estimation , 2004, Proceedings of the 2004 American Control Conference.

[23]  Michael Nikolaou,et al.  RTO: An overview and assessment of current practice , 2011 .

[24]  Manfred Morari,et al.  A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback , 2008, 2008 47th IEEE Conference on Decision and Control.

[25]  Francis J. Doyle,et al.  LP methods in MPC of large‐scale systems: Application to paper‐machine CD control , 1997 .

[26]  Zoltan K. Nagy,et al.  Nonlinear model predictive control of a four tank system: an experimental stability study , 2006, 2006 IEEE International Conference on Control Applications.

[27]  Zoltan K. Nagy,et al.  Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor , 2007 .

[28]  M Morari,et al.  Energy efficient building climate control using Stochastic Model Predictive Control and weather predictions , 2010, Proceedings of the 2010 American Control Conference.

[29]  G. Martin,et al.  Nonlinear model predictive control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[30]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[31]  Manfred Morari,et al.  A hybrid model predictive control approach to the direct torque control problem of induction motors , 2007 .

[32]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[33]  Isak Nielsen Modeling and Control of Friction Stir Welding in 5 cm thick Copper Canisters , 2012 .

[34]  Victor M. Becerra,et al.  Enhancing model predictive control using dynamic data reconciliation , 2002 .

[35]  L. Biegler,et al.  Control and Optimization with Differential-Algebraic Constraints , 2012 .

[36]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[37]  L. Biegler,et al.  Data reconciliation and gross‐error detection for dynamic systems , 1996 .

[38]  B. Bequette,et al.  Control-relevant dynamic data reconciliation and parameter estimation , 1993 .

[39]  Kody M. Powell,et al.  Control of a large scale solar thermal energy storage system , 2011, Proceedings of the 2011 American Control Conference.

[40]  Francis J. Doyle,et al.  Model based control of a four-tank system , 2000 .

[41]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[42]  Zoltan K. Nagy,et al.  Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon , 2009 .

[43]  Lorenz T. Biegler,et al.  A Trust Region SQP Algorithm for Equality Constrained Parameter Estimation with Simple Parameter Bounds , 2004, Comput. Optim. Appl..

[44]  Frank Allgöwer,et al.  Assessment and Future Directions of Nonlinear Model Predictive Control , 2007 .

[45]  John D. Hedengren,et al.  Fiber Optic Monitoring of Subsea Equipment , 2012 .

[46]  Vladimir N. Maleta,et al.  Chemical Engineering and Processing: Process Intensification , 2011 .

[47]  Thomas J. Harris,et al.  Selection of optimal parameter set using estimability analysis and MSE-based model-selection criterion , 2011 .

[48]  Kody M. Powell,et al.  Dynamic optimization of a solar thermal energy storage system over a 24 hour period using weather forecasts , 2013, 2013 American Control Conference.

[49]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[50]  Francis J. Doyle,et al.  Use of multiple models and qualitative knowledge for on-line moving horizon disturbance estimation and fault diagnosis , 2002 .

[51]  Thomas F. Edgar,et al.  BIAS Detection and Estimation in Dynamic Data Reconciliation , 1994 .

[52]  Ben Spivey Monitoring of Process Fouling Using First-Principles Modeling and Moving Horizon Estimation Overview , 2009 .

[53]  Wolfgang Dahmen,et al.  Introduction to Model Based Optimization of Chemical Processes on Moving Horizons , 2001 .

[54]  Reza Asgharzadeh Shishivan,et al.  Advanced Deepwater Monitoring System , 2013 .

[55]  Peter Piela Ascend: an object-oriented computer environment for modeling and analysis , 1989 .

[56]  Manfred Morari,et al.  Medium term scheduling of a hydro-thermal system using stochastic model predictive control , 2008, Autom..

[57]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[58]  Thomas F. Edgar,et al.  Approximate nonlinear model predictive control with in situ adaptive tabulation , 2008, Comput. Chem. Eng..

[59]  H. Genceli,et al.  Robust Stability Analysis of Constrained / ,-Norm Model Predictive Control , 2004 .

[60]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[61]  James B. Rawlings,et al.  Moving Horizon Estimation , 2018, Encyclopedia of Systems and Control.

[62]  B. Finlayson,et al.  Orthogonal collocation on finite elements , 1975 .

[63]  Manfred Morari,et al.  Learning a feasible and stabilizing explicit model predictive control law by robust optimization , 2011, IEEE Conference on Decision and Control and European Control Conference.

[64]  J. W. Modestino,et al.  Adaptive Control , 1998 .

[65]  Tyler A. Soderstrom Advanced Process Control in ExxonMobil Chemical Company: Successes and Challenges , 2010 .

[66]  John D. Hedengren,et al.  Improved Load Following of a Boiler with Advanced Process Control , 2011 .

[67]  Michael Nikolaou,et al.  Model predictive controllers: A critical synthesis of theory and industrial needs , 2001 .

[68]  Thomas F. Edgar,et al.  Industrial Application of a Large-Scale Dynamic Data Reconciliation Strategy , 2000 .

[69]  Francis J. Doyle,et al.  Customization strategies for the solution of linear programming problems arising from large scale model predictive control of a paper machine , 1999 .

[70]  Thomas F. Edgar,et al.  Constrained control and optimization of tubular solid oxide fuel cells for extending cell lifetime , 2012, 2012 American Control Conference (ACC).

[71]  Rogelio Lozano,et al.  Adaptive Control: Algorithms, Analysis and Applications , 2011 .

[72]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[73]  Jairo Espinosa,et al.  A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark , 2011 .

[74]  James B. Rawlings,et al.  A new autocovariance least-squares method for estimating noise covariances , 2006, Autom..

[75]  L. Biegler,et al.  Redescending estimators for data reconciliation and parameter estimation , 2001 .

[76]  James B. Rawlings,et al.  Linear programming and model predictive control , 2000 .

[77]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[78]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[79]  M. A. Latifi,et al.  A MATLAB PACKAGE FOR ORTHOGONAL COLLOCATIONS ON FINITE ELEMENTS IN DYNAMIC OPTIMISATION , 2005 .

[80]  Efstratios N. Pistikopoulos,et al.  Moving horizon estimation: Error dynamics and bounding error sets for robust control , 2013, Autom..

[81]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[82]  Karl-Erik Årzén,et al.  Modeling and optimization with Optimica and JModelica.org - Languages and tools for solving large-scale dynamic optimization problems , 2010, Comput. Chem. Eng..

[83]  Ivana Drca,et al.  Nonlinear Model Predictive Control of the Four Tank Process , 2007 .