Induction of Fuzzy Classification Systems Using Evolutionary ACO-Based Algorithms

In this paper we have proposed an evolutionary algorithm to induct fuzzy classification rules. The algorithm uses an ant colony optimization based local searcher to improve the quality of final fuzzy classification system. The proposed algorithm is performed on intrusion detection as a high-dimensional classification problem. Results show that the implemented evolutionary ACO-Based algorithm is capable of producing a reliable fuzzy rule based classifier for intrusion detection

[1]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[2]  Salvatore J. Stolfo,et al.  Mining Audit Data to Build Intrusion Detection Models , 1998, KDD.

[3]  Andrew H. Sung,et al.  Sung 1 Feature Selection for Intrusion Detection using Neural Networks and Support Vector Machines , 2006 .

[4]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[5]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[6]  Olfa Nasraoui,et al.  Anomaly detection based on unsupervised niche clustering with application to network intrusion detection , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[7]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Sung Deok Cha,et al.  SAD: web session anomaly detection based on parameter estimation , 2004, Comput. Secur..

[9]  Tansel Özyer,et al.  Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening , 2007, J. Netw. Comput. Appl..

[10]  Bao Xu,et al.  Application of Support Vector Clustering Algorithm to Network Intrusion Detection , 2005, 2005 International Conference on Neural Networks and Brain.

[11]  Hervé Debar,et al.  An application of a recurrent network to an intrusion detection system , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  Fabio A. González,et al.  An immunity-based technique to characterize intrusions in computer networks , 2002, IEEE Trans. Evol. Comput..

[14]  Risto Miikkulainen,et al.  Intrusion Detection with Neural Networks , 1997, NIPS.

[15]  C. Lucas,et al.  Intrusion detection using a fuzzy genetics-based learning algorithm , 2007, J. Netw. Comput. Appl..

[16]  S. Sathiya Keerthi,et al.  Improvements to Platt's SMO Algorithm for SVM Classifier Design , 2001, Neural Computation.

[17]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[18]  James Cannady,et al.  Artificial Neural Networks for Misuse Detection , 1998 .

[19]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[21]  Jonatan Gómez,et al.  Evolving Fuzzy Classifiers for Intrusion Detection , 2002 .

[22]  Hisao Ishibuchi,et al.  Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes , 1999, IEEE Trans. Ind. Electron..

[23]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[24]  Gregg H. Gunsch,et al.  An artificial immune system architecture for computer security applications , 2002, IEEE Trans. Evol. Comput..

[25]  Hervé Debar,et al.  A neural network component for an intrusion detection system , 1992, Proceedings 1992 IEEE Computer Society Symposium on Research in Security and Privacy.

[26]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[27]  Eugene H. Spafford,et al.  An architecture for intrusion detection using autonomous agents , 1998, Proceedings 14th Annual Computer Security Applications Conference (Cat. No.98EX217).

[28]  William L. Fithen,et al.  State of the Practice of Intrusion Detection Technologies , 2000 .

[29]  Won Suk Lee,et al.  An anomaly intrusion detection method by clustering normal user behavior , 2003, Comput. Secur..

[30]  Alistair Munro,et al.  Evolving fuzzy rule based controllers using genetic algorithms , 1996, Fuzzy Sets Syst..

[31]  Edward G. Amoroso Intrusion Detection , 1999 .

[32]  Salvatore J. Stolfo,et al.  Using artificial anomalies to detect unknown and known network intrusions , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[33]  C. L. Karr,et al.  Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..

[34]  Ali A. Ghorbani,et al.  Y-means: a clustering method for intrusion detection , 2003, CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436).

[35]  Stefan Axelsson,et al.  Intrusion Detection Systems: A Survey and Taxonomy , 2002 .

[36]  Stephanie Forrest,et al.  Intrusion Detection Using Sequences of System Calls , 1998, J. Comput. Secur..

[37]  H. Ishibuchi,et al.  A hybrid fuzzy genetics-based machine learning algorithm: hybridization of Michigan approach and Pittsburgh approach , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[38]  Jacinth Salome,et al.  Fuzzy Data Mining and Genetic Algorithms Applied to Intrusion Detection , 2007 .

[39]  Charles Elkan,et al.  Results of the KDD'99 classifier learning , 2000, SKDD.

[40]  Manuel Valenzuela-Rendón,et al.  The Fuzzy Classifier System: A Classifier System for Continuously Varying Variables , 1991, ICGA.

[41]  S. Smith,et al.  A Learning System Based on Genetic Algorithms , 1980 .

[42]  Francisco Herrera,et al.  Tuning fuzzy logic controllers by genetic algorithms , 1995, Int. J. Approx. Reason..

[43]  Rui Wang,et al.  Artificial immune theory based network intrusion detection system and the algorithms design , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[44]  Arthur B. Maccabe,et al.  The architecture of a network level intrusion detection system , 1990 .