Fair Testing through Probabilistic Testing

In this paper we define a probabilistic testing semantics which can be used to alternatively characterize fair testing. The key idea is to define a probabilistic semantics in such a way that two non-probabilistic processes are fair equivalent if any probabilistic version of both processes are equivalent in our probabilistic testing semantics. In order to get this result we define a simple probabilistic must semantics by saying that a probabilistic process must pass a test if the probability with which the process passes the test equals 1. Finally, we present an algorithm for deciding whether the probability with which a finite-state process passes a finite-state test equals 1. Alternatively, this algorithm can be used for computing whether a finite-state process fairly passes a finite-state test.

[1]  Arend Rensink,et al.  Applications of Fair Testing , 1996, FORTE.

[2]  Luis Llana,et al.  Testing Semantics for a Probabilistic-Timed Process Algebra , 1997, ARTS.

[3]  Joan Garfield,et al.  Difficulties in Learning Basic Concepts in Probability and Statistics: Implications for Research. , 1988 .

[4]  Rance Cleaveland,et al.  Infinite Probabilistic and Nonprobabilistic Testing , 1998, FSTTCS.

[5]  Jan A. Bergstra,et al.  Failures without chaos: a new process semantics for fair abstraction , 1987, Formal Description of Programming Concepts.

[6]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[7]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[8]  Lynn Arthur Steen,et al.  On the shoulders of giants: new approaches to numeracy , 1990 .

[9]  Joost-Pieter Katoen,et al.  On Generative Parallel Composition , 1998, PROBMIV.

[10]  C. Gregorio-Rodríguez,et al.  Specifying and Verifying the Alternating Bit Protocol with Probabilistic-Timed LOTOS ∗ , 1996 .

[11]  Shimshon Kinory How to Use (and Misuse) Statistics , 1979 .

[12]  Manuel Núñez,et al.  An Axiomatization of Probabilistic Testing , 1999, ARTS.

[13]  Rance Cleaveland,et al.  Fully Abstract Characterizations of Testing Preorders for Probabilistic Processes , 1994, CONCUR.

[14]  Matthew Hennessy,et al.  An Algebraic Theory of Fair Asynchronous Communicating Processes , 1985, ICALP.

[15]  Jan Tretmans,et al.  Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation , 1996, Comput. Networks ISDN Syst..

[16]  Rance Cleaveland,et al.  A Theory of Testing for Soft Real-Time Processes , 1996, SEKE.

[17]  C Ls Olson,et al.  Statistics: Making Sense of Data , 1987 .

[18]  Arend Rensink,et al.  Fair testing , 1995, Inf. Comput..

[19]  Jan A. Bergstra,et al.  On the Consistency of Koomen's Fair Abstraction Rule , 1987, Theor. Comput. Sci..

[20]  Manuel Núñez,et al.  Denotational Semantics for Probabilistic Refusal Testing , 1998, PROBMIV.

[21]  Rance Cleaveland,et al.  Divergence and Fair Testing , 1995, ICALP.

[22]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[23]  Rance Cleaveland,et al.  Testing Preorders for Probabilistic Processes , 1992, Inf. Comput..

[24]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[25]  Gerardo Costa,et al.  Weak and Strong Fairness in CCS , 1987, Inf. Comput..

[26]  David de Frutos-Escrig,et al.  Testing Semantics for Probabilistic LOTOS , 1995, FORTE.

[27]  Robin Milner,et al.  A Modal Characterisation of Observable Machine-Behaviour , 1981, CAAP.

[28]  David de Frutos-Escrig,et al.  Friendly Testing as a Conformance Relation , 1997, FORTE.

[29]  C. J. Koomen Algebraic specification and verification of communication protocols , 1985 .

[30]  Stephen K. Campbell Flaws and Fallacies in Statistical Thinking , 1973 .

[31]  TretmansJan Conformance testing with labelled transition systems , 1996 .

[32]  Manuel Núñez,et al.  Acceptance Trees for Probabilistic Processes , 1995, CONCUR.