Spray‐pyrolyzed Cd‐substituted kesterite thin‐films for photovoltaic applications: Post annealing conditions and property studies

[1]  Z. Fadil,et al.  Magnetic Behaviors of the Kesterite and the Stannite Nanostructures: Monte Carlo Study , 2022, SPIN.

[2]  Yanhong Luo,et al.  Regulating crystal growth via organic lithium salt additive for efficient Kesterite solar cells , 2021 .

[3]  E. Iwuoha,et al.  Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell , 2021 .

[4]  E. Iwuoha,et al.  Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial , 2021, Nanomaterials.

[5]  H. Labrim,et al.  Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge) , 2021 .

[6]  K. Choy,et al.  Recent Development in Earth-Abundant Kesterite Materials and Their Applications , 2020, Sustainability.

[7]  K. Kar,et al.  Nanocellulose‐based polymer composites for energy applications—A review , 2020 .

[8]  A. Sharmin,et al.  Sputtered single-phase kesterite Cu2ZnSnS4 (CZTS) thin film for photovoltaic applications: Post annealing parameter optimization and property analysis , 2020 .

[9]  W. Jo,et al.  Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites , 2019, Journal of Physics: Energy.

[10]  T. Dittrich,et al.  Thin films of (AgxCu1−x)2ZnSn(S,Se)4 (x = 0.05–0.20) prepared by spray pyrolysis , 2019, Thin Solid Films.

[11]  M. Bafandeh,et al.  Effect of annealing on UV‐visible absorption and photoluminescence behavior of liquid phase deposited TiO 2 nanorods , 2019, International Journal of Applied Ceramic Technology.

[12]  P. Scardi,et al.  Solution-Based Synthesis and Characterization of Cu2ZnSnS4 (CZTS) Thin Films , 2019, Molecules.

[13]  M. Placidi,et al.  Doping and alloying of kesterites , 2019, Journal of Physics: Energy.

[14]  Zacharie Jehl,et al.  Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review , 2019, Advanced materials.

[15]  M. Placidi,et al.  Kesterite: New Progress Toward Earth-Abundant Thin-Film Photovoltaic , 2019, Advanced Micro- and Nanomaterials for Photovoltaics.

[16]  E. Carter,et al.  Understanding the Effects of Cd and Ag Doping in Cu2ZnSnS4 Solar Cells , 2018, Chemistry of Materials.

[17]  M. C. Rao,et al.  RETRACTED: Structural and electrical properties of CZTS thin films by electrodeposition , 2018, Results in Physics.

[18]  Xiuling Li,et al.  Thin‐Film Solar Cells: Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials (Adv. Sci. 4/2018) , 2018, Advanced Science.

[19]  Andrea Trianni,et al.  New perspectives for green and sustainable chemistry and engineering: Approaches from sustainable resource and energy use, management, and transformation , 2018 .

[20]  G. Dennler,et al.  On the origin of band-tails in kesterite , 2017, Solar Energy Materials and Solar Cells.

[21]  Yaowei Wei,et al.  Beyond 11% efficient Cu2ZnSn(Se,S)4 thin film solar cells by cadmium alloying , 2018 .

[22]  Martin A. Green,et al.  Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1–xSnS4 Solar Cell: Effects of Cadmium Alloying , 2017 .

[23]  Andriy Zakutayev,et al.  Brief review of emerging photovoltaic absorbers , 2017 .

[24]  A. Walsh,et al.  The Steady Rise of Kesterite Solar Cells , 2017 .

[25]  J. Chu,et al.  Cation substitution induced structural transition, band gap engineering and grain growth of Cu2CdxZn1−xSnS4 thin films , 2017 .

[26]  M. Z. Sahdan,et al.  Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties , 2017 .

[27]  V. Fedorov,et al.  Effects of annealing on elemental composition and quality of CZTSSe thin films obtained by spray pyrolysis , 2016 .

[28]  A. Slaoui,et al.  Kesterite / wurtzite Cu2ZnSnS4 nanocrystals: Synthesis and characterization for PV applications , 2016, 2016 International Renewable and Sustainable Energy Conference (IRSEC).

[29]  Nadarajah Kannan,et al.  Solar energy for future world: - A review , 2016 .

[30]  Yuena Meng,et al.  Improving the Performance of Solution-Processed Cu2ZnSn(S,Se)4 Photovoltaic Materials by Cd2+ Substitution , 2016 .

[31]  T. Unold,et al.  Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films. , 2016, Physical chemistry chemical physics : PCCP.

[32]  A. Walsh,et al.  Is the Cu/Zn Disorder the Main Culprit for the Voltage Deficit in Kesterite Solar Cells? , 2016 .

[33]  K. Asokan,et al.  Modified structural, surface morphological and optical studies of Li3+ swift heavy ion irradiation on zinc oxide nanoparticles , 2016 .

[34]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[35]  Oki Gunawan,et al.  Photovoltaic Materials and Devices Based on the Alloyed Kesterite Absorber (AgxCu1–x)2ZnSnSe4 , 2016 .

[36]  Samuel Asumadu-Sarkodie,et al.  A review of renewable energy sources, sustainability issues and climate change mitigation , 2016 .

[37]  Q. Qiao,et al.  Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells , 2015 .

[38]  E. Carter,et al.  A Strategy to Stabilize Kesterite CZTS for High-Performance Solar Cells , 2015 .

[39]  S. Tiwari,et al.  A comparative assessment of crystallite size and lattice strain in differently cast A356 aluminium alloy , 2015 .

[40]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[41]  S Saravanan,et al.  Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector & diffraction grating , 2014 .

[42]  S. A. Jahangirova,et al.  Cu2ZnSnS4 thin film solar cells , 2014 .

[43]  A. Benyoussef,et al.  Monte Carlo study of the double perovskite nano Sr2VMoO6 , 2013 .

[44]  B. Yao,et al.  Bandgap engineering of Cu2CdxZn1−xSnS4 alloy for photovoltaic applications: A complementary experimental and first-principles study , 2013 .

[45]  Rommel Noufi,et al.  The state and future prospects of kesterite photovoltaics , 2013 .

[46]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[47]  T. Dhakal,et al.  Thin Film Solar Cells Using Earth-Abundant Materials , 2013 .

[48]  S. Siebentritt,et al.  Kesterites—a challenging material for solar cells , 2012 .

[49]  E. Aydil,et al.  Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments , 2012 .

[50]  E. Aydil,et al.  Copper zinc tin sulfide solar cells , 2011 .

[51]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[52]  L. Chaar,et al.  Review of photovoltaic technologies , 2011 .

[53]  C. Persson Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .

[54]  M. Green The path to 25% silicon solar cell efficiency: History of silicon cell evolution , 2009 .

[55]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[56]  Aron Walsh,et al.  Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .

[57]  Nuggehalli M. Ravindra,et al.  Energy gap refractive index relations in semiconductors An overview , 2007 .

[58]  Viresh Dutta,et al.  Thin‐film solar cells: an overview , 2004 .

[59]  M. Sakamoto,et al.  Effects of substitution of Al for Si on the lattice variations and thermal expansion of Mo(Si,Al)2 , 2004 .

[60]  F. Muller‐Karger,et al.  Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts , 2002 .