Measure for the degree of non-markovian behavior of quantum processes in open systems.

We construct a general measure for the degree of non-Markovian behavior in open quantum systems. This measure is based on the trace distance which quantifies the distinguishability of quantum states. It represents a functional of the dynamical map describing the time evolution of physical states, and can be interpreted in terms of the information flow between the open system and its environment. The measure takes on nonzero values whenever there is a flow of information from the environment back to the open system, which is the key feature of non-Markovian dynamics.

[1]  S. Barnett,et al.  Hazards of reservoir memory , 2001 .

[2]  H. Breuer,et al.  Structure of completely positive quantum master equations with memory kernel. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[4]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[5]  Jyrki Piilo,et al.  Non-Markovian quantum jumps. , 2007, Physical review letters.

[6]  Bassano Vacchini,et al.  Quantum semi-Markov processes. , 2008, Physical review letters.

[7]  J. Piilo,et al.  Stochastic jump processes for non-Markovian quantum dynamics , 2008, 0810.5511.

[8]  Daniel A. Lidar,et al.  Non-Markovian dynamics of a qubit coupled to an Ising spin bath , 2007, 0707.2096.

[9]  Rolando Rebolledo,et al.  On Completely Positive Non-Markovian Evolution of a d-Level System , 2008, Open Syst. Inf. Dyn..

[10]  Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators , 2009 .

[11]  A. A. Budini Lindblad rate equations , 2006, quant-ph/0611222.

[12]  Mary Beth Ruskai,et al.  BEYOND STRONG SUBADDITIVITY? IMPROVED BOUNDS ON THE CONTRACTION OF GENERALIZED RELATIVE ENTROPY , 1994 .

[13]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[14]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[15]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[16]  J. Piilo,et al.  Open system dynamics with non-Markovian quantum jumps , 2009, 0902.3609.

[17]  K. Lendi,et al.  Non-Markovian quantum dissipation in the Kraus representation , 2005 .

[18]  Krzysztof Wódkiewicz,et al.  Depolarizing channel as a completely positive map with memory , 2004 .

[19]  The non-Markovian quantum behavior of open systems , 2003, quant-ph/0309114.

[20]  Heinz-Peter Breuer Genuine quantum trajectories for non-Markovian processes , 2004 .

[21]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[22]  K. Lendi,et al.  Ab initio construction of an analytically tractable Kraus map for non-Markovian quantum dissipation , 2006 .