The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata

[1]  B. Cormack,et al.  Expression Plasmids for Use in Candida glabrata , 2013, G3: Genes, Genomes, Genetics.

[2]  J. Olivares-Reyes,et al.  Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. , 2013, Biochimica et biophysica acta.

[3]  B. Cormack,et al.  Investigation of the Function of Candida albicans Als3 by Heterologous Expression in Candida glabrata , 2013, Infection and Immunity.

[4]  A. De Las Peñas,et al.  A Novel Downstream Regulatory Element Cooperates with the Silencing Machinery to Repress EPA1 Expression in Candida glabrata , 2012, Genetics.

[5]  Alexander D. Johnson,et al.  A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans , 2012, Cell.

[6]  A. De Las Peñas,et al.  A Protosilencer of Subtelomeric Gene Expression in Candida glabrata with Unique Properties , 2012, Genetics.

[7]  J. Mavrianos,et al.  Candida glabrata Pwp7p and Aed1p are required for adherence to human endothelial cells. , 2011, FEMS yeast research.

[8]  K. Kuchler,et al.  The Facultative Intracellular Pathogen Candida glabrata Subverts Macrophage Cytokine Production and Phagolysosome Maturation , 2011, The Journal of Immunology.

[9]  C. G. Koster,et al.  Identification and Differential Gene Expression of Adhesin-Like Wall Proteins in Candida glabrata Biofilms , 2011, Mycopathologia.

[10]  J. Fassler,et al.  Association of the Skn7 and Yap1 Transcription Factors in the Saccharomyces cerevisiae Oxidative Stress Response , 2011, Eukaryotic Cell.

[11]  T. Gabaldón,et al.  Regulation of Candida glabrata oxidative stress resistance is adapted to host environment , 2011, FEBS letters.

[12]  Ronald N. Jones,et al.  Candida Bloodstream Infections: Comparison of Species Distributions and Antifungal Resistance Patterns in Community-Onset and Nosocomial Isolates in the SENTRY Antimicrobial Surveillance Program, 2008-2009 , 2010, Antimicrobial Agents and Chemotherapy.

[13]  M. Pfaller,et al.  Variation in Susceptibility of Bloodstream Isolates of Candida glabrata to Fluconazole According to Patient Age and Geographic Location in the United States in 2001 to 2007 , 2009, Journal of Clinical Microbiology.

[14]  D. Andes,et al.  Time course global gene expression analysis of an in vivo Candida biofilm. , 2009, The Journal of infectious diseases.

[15]  B. Cormack,et al.  Expression of Candida glabrata adhesins after exposure to chemical preservatives. , 2009, The Journal of infectious diseases.

[16]  J. Fassler,et al.  Oxidative Stress Function of the Saccharomyces cerevisiae Skn7 Receiver Domain , 2009, Eukaryotic Cell.

[17]  M. Gavala,et al.  Cell signaling via the P2X7 nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking , 2009, Purinergic Signalling.

[18]  D. Krysan,et al.  Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes , 2008, Infection and Immunity.

[19]  M. Ramsdale,et al.  MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans. , 2008, Molecular biology of the cell.

[20]  C. D. de Koster,et al.  Of Novel Adhesin-like Wall Proteins : Differential Incorporation Candida Glabrata Supplemental Material , 2008 .

[21]  K. Kuchler,et al.  Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors , 2008, Molecular microbiology.

[22]  A. De Las Peñas,et al.  Is Controlled by the Transcription Factors Mediated by a Single Catalase, Cta1p, and Is Candida Glabrata Fungal Pathogen High Resistance to Oxidative Stress in The , 2008 .

[23]  Christopher J. Murakami,et al.  A method for high-throughput quantitative analysis of yeast chronological life span. , 2008, The journals of gerontology. Series A, Biological sciences and medical sciences.

[24]  Alistair J. P. Brown,et al.  Niche-Specific Activation of the Oxidative Stress Response by the Pathogenic Fungus Candida albicans , 2007, Infection and Immunity.

[25]  A. R. Fernandes,et al.  The SPI1 Gene, Encoding a Glycosylphosphatidylinositol-Anchored Cell Wall Protein, Plays a Prominent Role in the Development of Yeast Resistance to Lipophilic Weak-Acid Food Preservatives , 2006, Applied and Environmental Microbiology.

[26]  J. Fassler,et al.  Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae , 2005, Molecular microbiology.

[27]  Fran Lewitter,et al.  Intragenic tandem repeats generate functional variability , 2005, Nature Genetics.

[28]  M. Zupancic,et al.  A yeast by any other name: Candida glabrata and its interaction with the host. , 2005, Current opinion in microbiology.

[29]  M. Zupancic,et al.  Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI , 2005, Science.

[30]  B. Dujon,et al.  Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata , 2004, Molecular microbiology.

[31]  C. d’Enfert,et al.  The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p‐dependent pathway , 2004, Molecular microbiology.

[32]  J. Lodge,et al.  Mechanisms of Resistance to Oxidative and Nitrosative Stress: Implications for Fungal Survival in Mammalian Hosts , 2004, Eukaryotic Cell.

[33]  K. Marr,et al.  Mechanism of Increased Fluconazole Resistance in Candida glabrata during Prophylaxis , 2004, Antimicrobial Agents and Chemotherapy.

[34]  A. De Las Peñas,et al.  Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. , 2003, Genes & development.

[35]  B. Cormack,et al.  Tn7-based genome-wide random insertional mutagenesis of Candida glabrata. , 2003, Genome research.

[36]  Stanley Falkow,et al.  Gene Expression Profiling of Helicobacter pylori Reveals a Growth-Phase-Dependent Switch in Virulence Gene Expression , 2003, Infection and Immunity.

[37]  S. Blad,et al.  Low external pH induces HOG1‐dependent changes in the organization of the Saccharomyces cerevisiae cell wall , 2001, Molecular microbiology.

[38]  A. Camilli,et al.  Detection and analysis of gene expression during infection by in vivo expression technology. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  I. Hautefort,et al.  Measurement of bacterial gene expression in vivo. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  J. Pérez-Ortín,et al.  Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift , 2000, Yeast.

[41]  S. Falkow,et al.  An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. , 1999, Science.

[42]  J. Garin,et al.  Yap1 and Skn7 Control Two Specialized Oxidative Stress Response Regulons in Yeast* , 1999, The Journal of Biological Chemistry.

[43]  S. Falkow,et al.  Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. , 1999, Genetics.

[44]  J. Sobel,et al.  Immunopathogenesis of recurrent vulvovaginal candidiasis , 1996, Clinical microbiology reviews.

[45]  Sanjay K. Chhablani,et al.  Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. , 1993, Genes & development.

[46]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[47]  P. Hanawalt,et al.  High-efficiency transformation of bacterial cells by electroporation , 1988, Journal of bacteriology.

[48]  K. Krause,et al.  The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. , 2007, Physiological reviews.

[49]  J. Strathern,et al.  Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual , 2005 .

[50]  Frederick M. Ausubel,et al.  Short protocols in molecular biology : a compendium of methods from Current protocols in molecular biology , 1989 .

[51]  G. Fink,et al.  Methods in yeast genetics , 1979 .