Computation and Practical Applications

A method for the recursive evaluation of linearized dynamic robot models is presented. The method is derived directly from the recursive Newton-Euler equations for tree structured manipulators with rotational, translational and screw joints. Applications to optimal-path planning and nonlinear decoupling control are discussed.

[1]  John J. Murray,et al.  Dynamic modeling of closed-chain robotic manipulators and implications for trajectory control , 1989, IEEE Trans. Robotics Autom..

[2]  J. Murray,et al.  Linearization and Sensitivity Models of the Newton-Euler Dynamic Robot Model , 1986 .

[3]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[4]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[5]  C.-J. Li,et al.  An efficient method for linearization of dynamic models of robot manipulators , 1989, IEEE Trans. Robotics Autom..

[6]  John J. Murray,et al.  Linearization and sensitivity functions of dynamic robot models , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Elmer G. Gilbert,et al.  Distance functions and their application to robot path planning in the presence of obstacles , 1985, IEEE J. Robotics Autom..

[8]  Yuan F. Zheng,et al.  Computation of input generalized forces for robots with closed kinematic chain mechanisms , 1985, IEEE J. Robotics Autom..

[9]  In Joong. Ha Nonlinear decoupling theory with applications to robotics , 1985 .

[10]  M. Vukobratovic,et al.  Scientific Fundamentals of Robotics 4: Real-Time Dynamics of Manipulation Robots , 1985 .

[11]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[12]  John J. Murray,et al.  Customized computational robot dynamics , 1987, J. Field Robotics.