Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization

[1]  E. Masliah,et al.  Immunotherapy for Alzheimer’s disease: past, present and future , 2014, Front. Aging Neurosci..

[2]  Alin Ciobica,et al.  The oxidative stress hypothesis in Alzheimer's disease. , 2013, Psychiatria Danubina.

[3]  U. Müller,et al.  Functions of the APP gene family in the nervous system: insights from mouse models , 2012, Experimental Brain Research.

[4]  E. Capetillo-Zarate,et al.  Impaired β-Amyloid Secretion in Alzheimer's Disease Pathogenesis , 2011, The Journal of Neuroscience.

[5]  J. Koh,et al.  Role of Zinc Metallothionein-3 (ZnMt3) in Epidermal Growth Factor (EGF)-induced c-Abl Protein Activation and Actin Polymerization in Cultured Astrocytes* , 2011, The Journal of Biological Chemistry.

[6]  Comert Kural,et al.  Actin dynamics counteract membrane tension during clathrin-mediated endocytosis , 2011, Nature Cell Biology.

[7]  Zheng Zachory Wei,et al.  Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease. , 2011, Current Alzheimer research.

[8]  J. Morris,et al.  Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease , 2010, Science.

[9]  F. Ni,et al.  Neuronal growth‐inhibitory factor (metallothionein‐3): structure–function relationships , 2010, The FEBS journal.

[10]  M. Stoltenberg,et al.  Cell death in the injured brain: roles of metallothioneins. , 2009, Progress in histochemistry and cytochemistry.

[11]  E. Koo,et al.  Amyloid Precursor Protein Trafficking, Processing, and Function* , 2008, Journal of Biological Chemistry.

[12]  E. Levin,et al.  Metallothionein in the central nervous system: Roles in protection, regeneration and cognition. , 2008, Neurotoxicology.

[13]  S. Hell,et al.  Flotillin-Dependent Clustering of the Amyloid Precursor Protein Regulates Its Endocytosis and Amyloidogenic Processing in Neurons , 2008, The Journal of Neuroscience.

[14]  M. Maloney,et al.  Cofilin-mediated neurodegeneration in alzheimer’s disease and other amyloidopathies , 2007, Molecular Neurobiology.

[15]  E. Smythe,et al.  Actin regulation in endocytosis , 2006, Journal of Cell Science.

[16]  I. Armitage,et al.  Metallothionein-3 Is a Component of a Multiprotein Complex in the Mouse Brain , 2006, Experimental biology and medicine.

[17]  M. Kaksonen,et al.  Harnessing actin dynamics for clathrin-mediated endocytosis , 2006, Nature Reviews Molecular Cell Biology.

[18]  Jeffrey L. Wrana,et al.  Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling , 2005, Nature Reviews Molecular Cell Biology.

[19]  Sandra L Schmid,et al.  A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. , 2004, Molecular biology of the cell.

[20]  B. Nichols Caveosomes and endocytosis of lipid rafts , 2003, Journal of Cell Science.

[21]  S. Schmidt,et al.  Rab5-stimulated Up-regulation of the Endocytic Pathway Increases Intracellular β-Cleaved Amyloid Precursor Protein Carboxyl-terminal Fragment Levels and Aβ Production* , 2003, Journal of Biological Chemistry.

[22]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[23]  J. Benovic,et al.  The ins and outs of G protein-coupled receptor trafficking. , 2003, Trends in biochemical sciences.

[24]  M. D'Andrea,et al.  Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains , 2003, Brain Research.

[25]  R. Malinow,et al.  APP Processing and Synaptic Function , 2003, Neuron.

[26]  M. McNiven,et al.  Cortactin Is a Component of Clathrin-Coated Pits and Participates in Receptor-Mediated Endocytosis , 2003, Molecular and Cellular Biology.

[27]  L. K. Baker,et al.  Oligomeric and Fibrillar Species of Amyloid-β Peptides Differentially Affect Neuronal Viability* , 2002, The Journal of Biological Chemistry.

[28]  D. O'Leary,et al.  Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension , 2002, The Journal of cell biology.

[29]  B. Deurs,et al.  Internalization of cholera toxin by different endocytic mechanisms. , 2001, Journal of cell science.

[30]  M. Aschner,et al.  Roles of the metallothionein family of proteins in the central nervous system , 2001, Brain Research Bulletin.

[31]  D. Selkoe Alzheimer's disease: genes, proteins, and therapy. , 2001, Physiological reviews.

[32]  A. Dautry‐Varsat,et al.  Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. , 2001, Molecular cell.

[33]  P R Evans,et al.  Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. , 2001, Science.

[34]  S. Bohlander,et al.  Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. , 1999, Molecular biology of the cell.

[35]  Richard Treisman,et al.  Signal-Regulated Activation of Serum Response Factor Is Mediated by Changes in Actin Dynamics , 1999, Cell.

[36]  C. Masters,et al.  Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein , 1999, Nature Structural Biology.

[37]  A. Craig,et al.  Role of Actin in Anchoring Postsynaptic Receptors in Cultured Hippocampal Neurons: Differential Attachment of NMDA versus AMPA Receptors , 1998, The Journal of Neuroscience.

[38]  J. Stow,et al.  Fluid-phase markers in the basolateral endocytic pathway accumulate in response to the actin assembly-promoting drug Jasplakinolide. , 1998, Molecular biology of the cell.

[39]  R. Palmiter,et al.  Disruption of the Metallothionein-III Gene in Mice: Analysis of Brain Zinc, Behavior, and Neuron Vulnerability to Metals, Aging, and Seizures , 1997, The Journal of Neuroscience.

[40]  L. Mucke,et al.  β-Secretase Processing of the β-Amyloid Precursor Protein in Transgenic Mice Is Efficient in Neurons but Inefficient in Astrocytes* , 1996, The Journal of Biological Chemistry.

[41]  S. Zigmond,et al.  Signal transduction and actin filament organization. , 1996, Current opinion in cell biology.

[42]  Y. Uchida,et al.  Growth-inhibitory factor, metallothionein-like protein, and neurodegenerative diseases. , 1994, Biological signals.

[43]  D. Botstein,et al.  Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane , 1994, The Journal of cell biology.

[44]  J. Coyle,et al.  Oxidative stress, glutamate, and neurodegenerative disorders. , 1993, Science.

[45]  R. Palmiter,et al.  MT-III, a brain-specific member of the metallothionein gene family. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Titani,et al.  The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein , 1991, Neuron.

[47]  J. Vandekerckhove Actin-binding proteins. , 1990, Current opinion in cell biology.

[48]  D Botstein,et al.  Yeast actin-binding proteins: evidence for a role in morphogenesis , 1988, The Journal of cell biology.

[49]  K. Grzeschik,et al.  The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor , 1987, Nature.

[50]  A. Ciechanover,et al.  pH and the recycling of transferrin during receptor-mediated endocytosis. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Richard G. W. Anderson,et al.  Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts , 1977, Cell.

[52]  M. Kessels,et al.  Endocytosis and the cytoskeleton. , 2002, International review of cytology.

[53]  T. Shirao,et al.  Disappearance of actin‐binding protein, drebrin, from hippocampal synapses in alzheimer's disease , 1996, Journal of neuroscience research.