Nanoindentation response of nanocrystalline copper via molecular dynamics: Grain-size effect

Abstract This paper is aimed at investigating the mechanical properties and deformation mechanisms of nanocrystalline copper under nanoindentation. The Voronoi tessellation method is adopted to generate nanocrystalline structures with stochastic grain orientations that mimic those in experiments. Grain-size effect is studied and discussed via molecular dynamics simulations. The results reveal the inversion of Hall-Petch relation about hardness at a grain size of 15.1 nm, which agrees well with previous works in tension. Below the critical grain size, grain boundary sliding, grain growth and grain rotation are easily observed. Grain boundary motion is the dominant deformation with smaller grain size below 15.1 nm while dislocation motion dominates above the critical value. It is noteworthy that the elastic recovery in indentation direction, increases with larger grain size and monocrystalline copper behaves with the strongest elastic recovery. The study further reveals the deformation mechanism of nanocrystalline copper under nanoindentation and accelerates the functional applications of nanocrystalline materials. Subject areas Material science; computational material.

[1]  Xianghe Peng,et al.  Grain size dependence of tensile properties in nanocrystalline diamond , 2019, Computational Materials Science.

[2]  M. Meyers,et al.  Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation , 2014 .

[3]  J. El-Awady,et al.  Molecular Dynamics Simulations of Orientation Effects During Tension, Compression, and Bending Deformations of Magnesium Nanocrystals , 2015 .

[4]  M. Meyers,et al.  Inverse Hall–Petch relationship in nanocrystalline tantalum , 2013 .

[5]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[6]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[7]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[8]  T. Sun,et al.  Atomistic Investigation of Scratching-Induced Deformation Twinning in Nanocrystalline Cu , 2012 .

[9]  R. Xia,et al.  Molecular dynamics simulation of mechanical properties of nanocrystalline platinum: Grain-size and temperature effects , 2019, Physics Letters A.

[10]  G. Tucker,et al.  Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel , 2013 .

[11]  A. Bushby,et al.  Determining the Area Function of Spherical Indenters for Nanoindentation. , 2000 .

[12]  Alexander Stukowski,et al.  Extracting dislocations and non-dislocation crystal defects from atomistic simulation data , 2010 .

[13]  Xiaodong Han,et al.  Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum , 2014, Nature Communications.

[14]  T. Fang,et al.  Grain size effect on indentation of nanocrystalline copper , 2015 .

[15]  G. Srikesh,et al.  Chemical synthesis of Co and Mn co-doped NiO nanocrystalline materials as high-performance electrode materials for potential application in supercapacitors , 2016 .

[16]  Paulo S. Branicio,et al.  Structural characterization of deformed crystals by analysis of common atomic neighborhood , 2007, Comput. Phys. Commun..

[17]  A. Rosen,et al.  On the validity of the hall-petch relationship in nanocrystalline materials , 1989 .

[18]  R. Prasad,et al.  Grain size Dependency, Plasticity and Dynamic Property Evaluation for Nano-crystalline BCC-Fe using Molecular Dynamic Simulations ☆ , 2017 .

[19]  Huajian Gao,et al.  Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties , 2017 .

[20]  A. Corma,et al.  High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application , 2015, Chemical science.

[21]  C. Nan,et al.  Grain Size-dependent Elastic Moduli of Nanocrystals , 1998 .

[22]  Yalin Dong,et al.  Controllable hierarchical micro/nano patterns on biomaterial surfaces fabricated by ultrasonic nanocrystalline surface modification , 2018 .

[23]  T. Fang,et al.  Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys , 2015, Journal of Molecular Modeling.

[24]  M. Rahimi‐Nasrabadi,et al.  Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application , 2016, Journal of Materials Science: Materials in Electronics.

[25]  G. Betz,et al.  Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite. , 2017, ACS applied materials & interfaces.

[26]  N. Hu,et al.  Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter , 2016, Scientific Reports.

[27]  Graeme Henkelman,et al.  Ethanol Decomposition on Pd–Au Alloy Catalysts , 2018, The Journal of Physical Chemistry C.

[28]  Mehrdad M. Sichani,et al.  A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock , 2015 .

[29]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[30]  B. Liu,et al.  Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper , 2017 .

[31]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[32]  Fengzhou Fang,et al.  Study of nanoindentation behavior of amorphous alloy using molecular dynamics , 2014 .

[33]  Robert J. Asaro,et al.  Toward a quantitative understanding of mechanical behavior of nanocrystalline metals , 2007 .

[34]  H. Urbassek,et al.  Comparative simulation study of the structure of the plastic zone produced by nanoindentation , 2015 .

[35]  A. Strachan,et al.  Mechanical response of nanocrystalline platinum via molecular dynamics: size effects in bulk versus thin-film samples , 2015 .

[36]  Huajian Gao,et al.  Mechanical properties and scaling laws of nanoporous gold , 2013 .

[37]  Christopher A. Schuh,et al.  The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation , 2007 .

[38]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[39]  Junqin Shi,et al.  Strengthening mechanisms of graphene coatings on Cu film under nanoindentation: A molecular dynamics simulation , 2019, Applied Surface Science.

[40]  N. Hu,et al.  Molecular dynamics simulation of plasticity in VN(001) crystals under nanoindentation with a spherical indenter , 2017 .

[41]  Yulong Li,et al.  Molecular dynamics study of tension-compression asymmetry of nanocrystal α-Ti with stacking fault , 2017 .

[42]  M. Micoulaut,et al.  Study of the effects of grain size on the mechanical properties of nanocrystalline copper using molecular dynamics simulation with initial realistic samples , 2017 .

[43]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[44]  S. Phillpot,et al.  Deformation twinning in nanocrystalline Al by molecular-dynamics simulation , 2002 .

[45]  S. Balamurugan,et al.  Nanocrystalline Gd₂Ti₂O₇ Pyrochlore Material for NIR Reflective Pigment Application: Micro-Structural and Optical Studies. , 2016, Journal of nanoscience and nanotechnology.

[46]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[47]  N. Yang,et al.  Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films. , 2015, ACS applied materials & interfaces.

[48]  K. Nie,et al.  Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel , 2017, Journal of Materials Science.

[49]  A. Mukherjee,et al.  Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials , 2003 .

[50]  T. Fang,et al.  Effects of grain size and temperature on mechanical response of nanocrystalline copper , 2016 .

[51]  Shiping Huang,et al.  Structure and dynamics of graphite-supported bimetallic nanoclusters , 2003 .

[52]  Liangchi Zhang,et al.  Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations , 2016 .

[53]  Kun Zhong,et al.  Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics , 2014 .

[54]  Juyoung Kim,et al.  Indentation size effect for spherical nanoindentation on nanoporous gold , 2018 .

[55]  C. Zha,et al.  Interfacial active fluorine site-induced electron transfer on TiO2 (001) facets to enhance polysulfide redox reactions for better liquid Li2S6-Based lithium–sulfur batteries , 2019, Journal of Materials Chemistry A.

[56]  L. H. Liu,et al.  The phase transition and phase stability of magnetoelectric BiFeO3 , 2006 .

[57]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[58]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[59]  S. Sinnott,et al.  Compression of carbon nanotubes filled with C60, CH4, or Ne: predictions from molecular dynamics simulations. , 2002, Physical review letters.

[60]  F. M. Peeters,et al.  NANOINDENTATION OF A CIRCULAR SHEET OF BILAYER GRAPHENE , 2010, 1105.2514.

[61]  Simon R. Phillpot,et al.  Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation , 2002, Nature materials.

[62]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[63]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[64]  M. Meyers,et al.  Grain-size dependent mechanical behavior of nanocrystalline metals , 2015 .

[65]  T. D. Young,et al.  A study of the effect of prerelaxation on the nanoindentation process of crystalline copper , 2011 .

[66]  R. Xia,et al.  Softening of nanocrystalline nanoporous platinum: A molecular dynamics simulation , 2018 .