Scalar vortex coronagraph mask design and predicted performance

Vortex coronagraphs are an attractive solution for imaging exoplanets with future space telescopes due to their relatively high throughput, large spectral bandwidth, and low sensitivity to low-order aberrations compared to other coronagraphs with similar inner working angles. Most of the vortex coronagraph mask development for space applications has focused on generating a polychromatic, vectorial, optical vortex using multiple layers of liquid crystal polymers. While this approach has been the most successful thus far, current fabrication processes achieve retardance errors of 0.1-1.0°, which causes a nonnegligible fraction of the starlight to leak through the coronagraph. Circular polarizers are typically used to reject the stellar leakage reducing the throughput by a factor of two. Vector vortex masks also complicate wavefront control because they imprint conjugated phase ramps on the orthogonal circular polarization components, which may need to be split in order to properly sense and suppress the starlight. Scalar vortex masks can potentially circumvent these limitations by applying the same phase shift to all incident light regardless of the polarization state and thus have the potential to significantly improve the performance of vortex coronagraphs. We present scalar vortex coronagraph designs that make use of focal plane masks with multiple layers of dielectrics that (a) produce phase patterns that are relatively friendly to standard manufacturing processes and (b) achieve sufficient broadband starlight suppression, in theory, for imaging Earth-like planets with future space telescopes.

[1]  Stuart B. Shaklan,et al.  Fast linearized coronagraph optimizer (FALCO) I: a software toolbox for rapid coronagraphic design and wavefront correction , 2018, Astronomical Telescopes + Instrumentation.

[2]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[3]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[4]  Bertrand Mennesson,et al.  ExoEarth yield landscape for future direct imaging space telescopes , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[5]  University of Arizona,et al.  The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Interim Report , 2018, 1809.09674.

[6]  Daniel W. Wilson,et al.  Astronomical demonstration of an optical vortex coronagraph. , 2008 .

[7]  S C Tidwell,et al.  Efficient radially polarized laser beam generation with a double interferometer. , 1993, Applied optics.

[8]  M. Tamura,et al.  Design and laboratory demonstration of an achromatic vector vortex coronagraph. , 2013, Optics express.

[9]  Henry Ngo,et al.  Reference Star Differential Imaging of Close-in Companions and Circumstellar Disks with the NIRC2 Vortex Coronagraph at the W. M. Keck Observatory , 2019, The Astronomical Journal.

[10]  John E. Krist,et al.  The Vector Vortex Coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization , 2010, Astronomical Telescopes + Instrumentation.

[11]  Bertrand Mennesson,et al.  Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements , 2018 .

[12]  Cesare Barbieri,et al.  Fabrication and testing of l = 2 optical vortex phase masks for coronography. , 2010, Optics express.

[13]  Grover A Swartzlander,et al.  Achromatic optical vortex lens. , 2006, Optics letters.

[14]  T. Pertsch,et al.  A broad-band scalar vortex coronagraph , 2013, 1307.4347.

[15]  Dimitri Mawet,et al.  The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B , 2016 .

[16]  Dimitri Mawet,et al.  Vortex fiber nulling for exoplanet observations. I. Experimental demonstration in monochromatic light. , 2019, Optics letters.

[17]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[18]  Min Gu,et al.  Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%. , 2002, Optics letters.

[19]  Dwight Moody,et al.  Fast linearized coronagraph optimizer (FALCO) II: optical model validation and time savings over other methods , 2018, Astronomical Telescopes + Instrumentation.

[20]  D. Mawet,et al.  Subwavelength surface-relief gratings for stellar coronagraphy. , 2005, Applied optics.

[21]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[22]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  E. Serabyn,et al.  Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph , 2017, 1706.07489.

[24]  G. Ruane,et al.  The LUVOIR architecture "A" coronagraph instrument , 2017, Optical Engineering + Applications.

[25]  Erez Hasman,et al.  Formation of helical beams by use of Pancharatnam-Berry phase optical elements. , 2002, Optics letters.

[26]  The LUVOIR Team The LUVOIR Mission Concept Study Interim Report , 2018 .

[27]  G. V. Uspleniev,et al.  The Phase Rotor Filter , 1992 .

[28]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[29]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[30]  G. Ruane,et al.  Fast linearized coronagraph optimizer (FALCO) IV: coronagraph design survey for obstructed and segmented apertures , 2018, Astronomical Telescopes + Instrumentation.

[31]  Jacques-Robert Delorme,et al.  Efficient Spectroscopy of Exoplanets at Small Angular Separations with Vortex Fiber Nulling , 2018, The Astrophysical Journal.

[32]  Brian Kern,et al.  Fast linearized coronagraph optimizer (FALCO) III: optimization of key coronagraph design parameters , 2018, Astronomical Telescopes + Instrumentation.

[33]  Haifeng Dong,et al.  Generating optical vortex with large topological charges by spiral phase plates in cascaded and double-pass configuration , 2018, Optik.

[34]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[35]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[36]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[37]  Grover A. Swartzlander,et al.  Vortex-phase filtering technique for extracting spatial information from unresolved sources. , 2014, Applied optics.

[38]  Russell A. Chipman,et al.  Terrestrial exoplanet coronagraph image quality polarization aberrations in Habex♦,# , 2018, Astronomical Telescopes + Instrumentation.

[39]  John E. Krist,et al.  High-contrast imaging results with the vortex coronagraph , 2013, Optics & Photonics - Optical Engineering + Applications.

[40]  Jacques-Robert Delorme,et al.  The vortex fiber nulling mode of the Keck Planet Imager and Characterizer (KPIC) , 2019, Optical Engineering + Applications.

[41]  Francois Henault Analysis of azimuthal phase mask coronagraphs , 2018, Optics Communications.

[42]  G. Swartzlander Broadband nulling of a vortex phase mask. , 2005, Optics letters.

[43]  Dimitri Mawet,et al.  Vortex fiber nulling for exoplanet observations: conceptual design, theoretical performance, and initial scientific yield predictions , 2019, Optical Engineering + Applications.

[44]  Daomu Zhao,et al.  Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams , 2008 .

[45]  Jae Hoon Lee,et al.  Experimental verification of an optical vortex coronagraph. , 2006, Physical review letters.

[46]  Dimitri Mawet,et al.  Vector vortex coronagraphy for exoplanet detection with spatially variant diffractive waveplates , 2019, Journal of the Optical Society of America B.

[47]  Dimitri Mawet,et al.  Improving vector vortex waveplates for high-contrast coronagraphy. , 2013, Optics express.

[48]  P. Lam,et al.  Generation of high-order optical vortices using directly machined spiral phase mirrors. , 2011, Applied optics.

[49]  Amir Give'on,et al.  Broadband wavefront correction algorithm for high-contrast imaging systems , 2007, SPIE Optical Engineering + Applications.

[50]  J. P. Woerdman,et al.  Production and characterization of spiral phase plates for optical wavelengths. , 2004, Applied optics.

[51]  Minning Zhu,et al.  Wide-band six-region phase mask coronagraph. , 2014, Optics express.

[52]  Erez Hasman,et al.  Polychromatic vectorial vortex formed by geometric phase elements. , 2007, Optics letters.

[53]  Qing Cao,et al.  Wide-band coronagraph with sinusoidal phase in the angular direction. , 2012, Optics express.

[54]  David M. Shemo,et al.  THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY , 2009, 0912.2287.

[55]  Cesare Barbieri,et al.  Design, fabrication and characterization of phase masks for astronomical applications , 2011 .

[56]  M. Tamura,et al.  An Eight-Octant Phase-Mask Coronagraph , 2008 .

[57]  Cesare Barbieri,et al.  Fabrication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography , 2009 .

[58]  Fr'ed'eric Bouchard,et al.  Achromatic orbital angular momentum generator , 2014, 1407.0065.

[59]  Dwight Moody,et al.  Complex apodized Lyot coronagraph for exoplanet imaging with partially obscured telescope apertures , 2013, Optics & Photonics - Optical Engineering + Applications.

[60]  Gianluca Ruffato,et al.  Fabrication and characterization of high-quality spiral phase plates for optical applications , 2015 .

[61]  Mikael Karlsson,et al.  Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. , 2003, Optics express.

[62]  C. Jenkins Optical vortex coronagraphs on ground-based telescopes , 2007, 0709.0153.