Biomimicry in textiles: past, present and potential. An overview

The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature.

[1]  D'arcy W. Thompson On growth and form i , 1943 .

[2]  J. David Reid,et al.  Imparting Water-Repellency to Textiles by Chemical Methods , 1948 .

[3]  N. F. Dow,et al.  Preliminary Investigations of Feasibility of Weaving Triaxial Fabrics (Doweave) , 1970 .

[4]  D. Lavigne,et al.  Radiative surface temperatures of exercising polar bears. , 1976, Comparative biochemistry and physiology. A, Comparative physiology.

[5]  Robert W. Work,et al.  Dimensions, Birefringences, and Force-Elongation Behavior of Major and Minor Ampullate Silk Fibers from Orb-Web-Spinning Spiders—The Effects of Wetting on these Properties , 1977 .

[6]  George Jeronimidis,et al.  Composites with high work of fracture , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  R. E. Grojean,et al.  Utilization of solar radiation by polar animals: an optical model for pelts. , 1980, Applied optics.

[8]  R. W. Work,et al.  A Physico-Chemical Study of the Supercontraction of Spider Major Ampullate Silk Fibers , 1982 .

[9]  K. Sukumaran,et al.  Structure property studies of fibres from various parts of the coconut tree , 1982 .

[10]  D. Bechert,et al.  Drag reduction mechanisms derived from shark skin , 1986 .

[11]  Ernesto Occhiello,et al.  Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene) , 1989 .

[12]  B. Barber,et al.  Prehistoric Textiles: The Development of Cloth in the Neolithic and Bronze Ages with Special Reference to the Aegean , 1991 .

[13]  D. M. Bushnell,et al.  DRAG REDUCTION IN NATURE , 1991 .

[14]  David L. Kaplan,et al.  Mechanical and thermal properties of dragline silk from the spider Nephila clavipes , 1994 .

[15]  S. Fu,et al.  Biomimicry of bamboo bast fiber with engineering composite materials , 1995 .

[16]  Shigeyasu Amada,et al.  Fiber texture and mechanical graded structure of bamboo , 1997 .

[17]  Wilhelm Barthlott,et al.  Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces , 1997 .

[18]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[19]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[20]  D. W. Bechert,et al.  Experiments on drag-reducing surfaces and their optimization with an adjustable geometry , 1997, Journal of Fluid Mechanics.

[21]  W. Barthlott,et al.  Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability , 1998 .

[22]  Oskar Liivak,et al.  Artificial Spinning of Spider Silk , 1998 .

[23]  D. W. Koon,et al.  Is polar bear hair fiber optic? , 1998, Applied optics.

[24]  Y. Termonia,et al.  Nylons from Nature: Synthetic Analogs to Spider Silk , 1998 .

[25]  P. Yager,et al.  Comparative Structural Characterization of Naturally- and Synthetically-Spun Fibers of Bombyx mori Fibroin , 1998 .

[26]  Oskar Liivak,et al.  A Microfabricated Wet-Spinning Apparatus To Spin Fibers of Silk Proteins. StructureProperty Correlations , 1998 .

[27]  A. Parker,et al.  The diversity and implications of animal structural colours. , 1998, The Journal of experimental biology.

[28]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[29]  C. Dawson,et al.  Heat transfer through penguin feathers , 1999, Journal of theoretical biology.

[30]  F Vollrath,et al.  Structure and function of the silk production pathway in the spider Nephila edulis. , 1999, International journal of biological macromolecules.

[31]  Mohan Srinivasarao,et al.  Nano‐Optics in the Biological World: Beetles, Butterflies, Birds, and Moths , 1999 .

[32]  Richard H. C. Bonser,et al.  The structural mechanical properties of down feathers and biomimicking natural insulation materials , 1999 .

[33]  D. W. Bechert,et al.  Fluid Mechanics of Biological Surfaces and their Technological Application , 2000, Naturwissenschaften.

[34]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[35]  M B Hinman,et al.  Synthetic spider silk: a modular fiber. , 2000, Trends in biotechnology.

[36]  H. Mera,et al.  High-Performance Fibers , 2000 .

[37]  M. Knight,et al.  Beta transition and stress-induced phase separation in the spinning of spider dragline silk. , 2000, International journal of biological macromolecules.

[38]  J. Roy Sambles,et al.  Shedding light on butterfly wings , 2001, SPIE Optics + Photonics.

[39]  R. Lewis,et al.  Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[40]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[41]  R. Lewis,et al.  Extreme Diversity, Conservation, and Convergence of Spider Silk Fibroin Sequences , 2001, Science.

[42]  J. W. Farrent,et al.  Influence of hydration on the mechanical performance of duck down feathers , 2001, British poultry science.

[43]  Huub M Toussaint,et al.  Swimming , 2002, Sports biomechanics.

[44]  Christopher Viney,et al.  Fibre science: Supercontraction stress in wet spider dragline , 2002, Nature.

[45]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  Steven Arcidiacono,et al.  Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells , 2002, Science.

[48]  Margareta Tengberg,et al.  First Evidence of Cotton at Neolithic Mehrgarh, Pakistan: Analysis of Mineralized Fibres from a Copper Bead , 2002 .

[49]  R. Grundmann,et al.  Flow over convergent and divergent wall riblets , 2002 .

[50]  Scott P McLean,et al.  Effect of a FastSkin suit on submaximal freestyle swimming. , 2003, Medicine and science in sports and exercise.

[51]  Stefan Enoch,et al.  Structural Colors in Nature and Butterfly-Wing Modeling , 2003 .

[52]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[53]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[54]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[55]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[56]  W. Barthlott,et al.  Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. , 2003, Journal of experimental botany.

[57]  Mie Yoshimura Structurally Colored Fiber "MORPHOTEX" , 2003 .

[58]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[59]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Andrew R. Parker,et al.  Structural colour: Opal analogue discovered in a weevil , 2003, Nature.

[61]  Jozef Keckes,et al.  Structure–function relationships of four compression wood types: micromechanical properties at the tissue and fibre level , 2004, Trees.

[62]  N. Parameswaran,et al.  On the fine structure of bamboo fibres , 1976, Wood Science and Technology.

[63]  John M. Cimbala,et al.  Fluid Mechanics: Fundamentals and Applications , 2004 .

[64]  Jian Li,et al.  Superhydrophobic PTFE Surfaces by Extension , 2004 .

[65]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[66]  H. Uhm,et al.  Superhydrophobic CFx coating via in-line atmospheric RF plasma of He-CF4-H2. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[67]  Masatsugu Shimomura,et al.  Single-Step Fabrication of Transparent Superhydrophobic Porous Polymer Films , 2005 .

[68]  Lei Jiang,et al.  Bioinspired surfaces with special wettability. , 2005, Accounts of chemical research.

[69]  V. Adrian Parsegian,et al.  Van der Waals Forces: Frontmatter , 2005 .

[70]  A. Falick,et al.  Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. , 2005, Biochemistry.

[71]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[72]  Yoseph Bar-Cohen,et al.  Biomimetics : Biologically Inspired Technologies , 2011 .

[73]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[74]  Lichao Gao,et al.  "Artificial lotus leaf" prepared using a 1945 patent and a commercial textile. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[75]  Jean-Pol Vigneron,et al.  Photonic crystal type structures of biological origin: Structural and spectral characterization , 2006 .

[76]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[77]  G. Hill,et al.  Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae) , 2006, Journal of The Royal Society Interface.

[78]  I. Burgert,et al.  Hierarchically structured ceramics by high-precision nanoparticle casting of wood. , 2006, Small.

[79]  J. Vincent,et al.  Biomimetics: its practice and theory , 2006, Journal of The Royal Society Interface.

[80]  Zhong Lin Wang,et al.  Controlled replication of butterfly wings for achieving tunable photonic properties. , 2006, Nano letters.

[81]  Bharat Bhushan,et al.  Adhesion of multi-level hierarchical attachment systems in gecko feet , 2007 .

[82]  Edward Bormashenko,et al.  Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition. , 2007, Journal of colloid and interface science.

[83]  Philip H. Gaskell,et al.  Mass production of bio-inspired structured surfaces , 2007 .

[84]  Metin Sitti,et al.  Adhesion of biologically inspired vertical and angled polymer microfiber arrays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[85]  Thomas Scheibel,et al.  Biotechnological production of spider-silk proteins enables new applications. , 2007, Macromolecular bioscience.

[86]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[87]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[88]  Gareth H. McKinley,et al.  Designing Superoleophobic Surfaces , 2007, Science.

[89]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[90]  R. ChittendenFandOakey,et al.  The Department of Trade and Industry , 2007 .

[91]  Yang Liu,et al.  An improved model of heat transfer through penguin feathers and down. , 2007, Journal of theoretical biology.

[92]  G de With,et al.  Biomimetic superhydrophobic and highly oleophobic cotton textiles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[93]  S. Grip Artificial Spider Silk-Recombinant Production and Determinants for Fiber Formation , 2008 .

[94]  J. Xin,et al.  Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment , 2008, Bioinspiration & biomimetics.

[95]  C. Willis,et al.  Structure and oil repellency: Textiles with liquid repellency to hexane , 2008 .

[96]  P. Motta,et al.  Bristled shark skin: a microgeometry for boundary layer control? , 2008, Bioinspiration & biomimetics.

[97]  Gareth H McKinley,et al.  Robust omniphobic surfaces , 2008, Proceedings of the National Academy of Sciences.

[98]  A. Ingram Butterfly Photonics: Form and Function , 2009 .

[99]  S. Wong,et al.  Supercontraction forces in spider dragline silk depend on hydration rate. , 2009, Zoology.

[100]  T. Stegmaier,et al.  Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[101]  Z. Shao,et al.  Superoleophobic cotton textiles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[102]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  Gareth H. McKinley,et al.  Fabrics with Tunable Oleophobicity , 2009 .

[104]  J. P. Sargent,et al.  A practical approach to the development of a synthetic Gecko tape , 2009 .

[105]  L. Mahadevan,et al.  Hygromorphs: from pine cones to biomimetic bilayers , 2009, Journal of The Royal Society Interface.

[106]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[107]  Bharat Bhushan,et al.  Multifunctional surface structures of plants: An inspiration for biomimetics , 2009 .

[108]  K. Reddy,et al.  Structural characterization of coconut tree leaf sheath fiber reinforcement , 2010, Journal of Forestry Research.

[109]  Marjan Eggermont BIOMIMETICS AS PROBLEM-SOLVING, CREATIVITY AND INNOVATION TOOL , 2011 .