A differential operator and weak topology for Lipschitz maps

Abstract We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak ∗ compact and convex valued maps equipped with the Scott topology, is continuous. For finite dimensional Euclidean spaces, where the L-derivative and the Clarke gradient coincide, we provide a simple characterization of the basic open subsets of the L-topology. We use this to verify that the L-topology is strictly coarser than the well-known Lipschitz norm topology. A complete metric on Lipschitz maps is constructed that is induced by the Hausdorff distance, providing a topology that is strictly finer than the L-topology but strictly coarser than the Lipschitz norm topology. We then develop a fundamental theorem of calculus of second order in finite dimensions showing that the continuous integral operator from the continuous Scott domain of non-empty convex and compact valued functions to the continuous Scott domain of ties is inverse to the continuous operator induced by the L-derivative. We finally show that in dimension one the L-derivative operator is a computable functional.

[1]  Andrea Sorbi,et al.  New Computational Paradigms: Changing Conceptions of What is Computable , 2007 .

[2]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[3]  P. Daniel Hestand,et al.  Mathematical theory of domains , 2002, SIGA.

[4]  Jimmie D. Lawson Computation on metric spaces via domain theory , 1998 .

[5]  Abbas Edalat A Continuous Derivative for Real-Valued Functions , 2007, CiE.

[6]  Klaus Keimel,et al.  The way-below relation of function spaces over semantic domains , 1998 .

[7]  Timothy A. Davis,et al.  MATLAB Primer , 1994 .

[8]  R F Stalley,et al.  Analysis: an introduction to ethical concepts. , 1978, Journal of medical ethics.

[9]  Abbas Edalat,et al.  Domain-theoretic Solution of Differential Equations (Scalar Fields) , 2003, MFPS.

[10]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[11]  Sets Which Split Families of Measurable Sets , 1972 .

[12]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[13]  Jonathan M. Borwein,et al.  Generalized subdifferentials: a Baire categorical approach , 2001 .

[14]  Abbas Edalat,et al.  A Computational Model for Multi-variable Differential Calculus , 2005, FoSSaCS.

[15]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[16]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[17]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[18]  Abbas Edalat,et al.  A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..

[19]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[20]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[21]  Jimmie D. Lawson,et al.  Quasicontinuous Functions , Domains , Extended Calculus , and Viscosity Solutions , 2022 .

[22]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[23]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[24]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[25]  Abbas Edalat,et al.  Domain Theoretic Solutions of Initial Value Problems for Unbounded Vector Fields , 2006, MFPS.

[26]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[27]  G. Lebourg,et al.  Generic differentiability of Lipschitzian functions , 1979 .

[28]  Abbas Edalat,et al.  A Domain Theoretic Account of Euler's Method for Solving Initial Value Problems , 2004, PARA.

[29]  Abbas Edalat,et al.  A Domain-Theoretic Approach to Computability on the Real Line , 1999, Theor. Comput. Sci..

[30]  Abbas Edalat,et al.  Denotational semantics of hybrid automata , 2007, J. Log. Algebraic Methods Program..

[31]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[32]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[33]  Abbas Edalat,et al.  Denotational semantics of hybrid automata , 2006, J. Log. Algebraic Methods Program..

[34]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[35]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[36]  Jimmie D. Lawson,et al.  Spaces of maximal points , 1997, Mathematical Structures in Computer Science.

[37]  Jimmie D. Lawson,et al.  Quasicontinuous functions, domains, and extended calculus , 2007 .

[38]  Abbas Edalat,et al.  Inverse and implicit functions in domain theory , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[39]  Abbas Edalat,et al.  Domain theory and differential calculus (functions of one variable) , 2004, Math. Struct. Comput. Sci..

[40]  H. Fédérer Geometric Measure Theory , 1969 .

[41]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[42]  Jonathan M. Borwein,et al.  Subgradient representation of multifunctions , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[43]  Viggo Stoltenberg-Hansen,et al.  Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.

[44]  W. Rudin Principles of mathematical analysis , 1964 .

[45]  Jonathan M. Borwein,et al.  Essentially Smooth Lipschitz Functions , 1997 .

[46]  Abbas Edalat,et al.  A Domain-Theoretic Account of Picard's Theorem , 2007 .

[47]  D. R. Sherbert Banach algebras of Lipschitz functions , 1962 .