Development of a Porous Coordination Polymer with a High Gas Capacity Using a Thiophene-Based Bent Tetracarboxylate Ligand.

A new porous coordination polymer (PCP) based on a ligand with a unique bent angle bearing a thiophene-bridged bent carboxylate ligand and the Cu2+ ion was synthesized and structurally characterized. The structure has a pillared-layer framework based on a kagomé-like layer with aromatic partition groups. It exhibits a high CO2 uptake of 180 mL(STP)/g at 1 bar, and 400 mL(STP)/g at 30 bar at 273 K. The uptakes of C2H2 and C2H4 reach 164 and 160 mL(STP)/g at 298 K and 1 bar, with good selectivity of C2H2 and C2H4 over CH4, both of which are among the highest levels of reported PCPs.

[1]  L. Daemen,et al.  An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials , 2016, Nature Communications.

[2]  G. Zhu,et al.  A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis , 2016 .

[3]  Jian Zhang,et al.  Synthesis of Metal-Adeninate Frameworks with High Separation Capacity on C2/C1 Hydrocarbons , 2016 .

[4]  Mingyan Wu,et al.  A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions , 2015, Nature Communications.

[5]  C. Tang,et al.  Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. , 2015, Nature chemistry.

[6]  C. Doonan,et al.  A 3-D diamondoid MOF catalyst based on in situ generated [Cu(L)2] N-heterocyclic carbene (NHC) linkers: hydroboration of CO2. , 2014, Chemical communications.

[7]  Jon G. Bell,et al.  Gas Storage and Diffusion through Nanocages and Windows in Porous Metal-Organic Framework Cu-2(2,3,5,6-tetramethylbenzene-1,4-diisophthalate)(H2O)(2) , 2014 .

[8]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[9]  A. Nalaparaju,et al.  "Click"-extended nitrogen-rich metal-organic frameworks and their high performance in CO2-selective capture. , 2014, Chemical communications.

[10]  S. Sakaki,et al.  Interaction of various gas molecules with paddle-wheel-type open metal sites of porous coordination polymers: theoretical investigation. , 2014, Inorganic chemistry.

[11]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[12]  Zhiyong Lu,et al.  A highly porous agw-type metal–organic framework and its CO2 and H2 adsorption capacity , 2013 .

[13]  Yuanjing Cui,et al.  A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature , 2013 .

[14]  Rajamani Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[15]  Zhigang Xie,et al.  A high connectivity metal–organic framework with exceptional hydrogen and methane uptake capacities , 2012 .

[16]  M. Fröba,et al.  A new series of isoreticular copper-based metal–organic frameworks containing non-linear linkers with different group 14 central atoms , 2012 .

[17]  Mircea Dincă,et al.  Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal-organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). , 2012, Dalton transactions.

[18]  Céline Chizallet,et al.  Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations. , 2012, Journal of the American Chemical Society.

[19]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[20]  Jing Li,et al.  Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. , 2012, Angewandte Chemie.

[21]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[22]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[23]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[24]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[25]  A. Matzger,et al.  Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity. , 2010, Journal of the American Chemical Society.

[26]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[27]  J. Hupp,et al.  Synthesis and gas sorption properties of a metal-azolium framework (MAF) material. , 2009, Inorganic chemistry.

[28]  U. Mueller,et al.  Industrial Applications of Metal—Organic Frameworks , 2009 .

[29]  H. Kim,et al.  Concomitant formation of N-heterocyclic carbene-copper complexes within a supramolecular network in the self-assembly of imidazolium dicarboxylate with metal ions. , 2009, Inorganic chemistry.

[30]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[31]  Jie‐Peng Zhang,et al.  Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. , 2009, Journal of the American Chemical Society.

[32]  Alexander J. Blake,et al.  High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. , 2009, Journal of the American Chemical Society.

[33]  Young Eun Cheon,et al.  A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. , 2008, Angewandte Chemie.

[34]  Daqiang Yuan,et al.  Enhancing H2 uptake by "close-packing" alignment of open copper sites in metal-organic frameworks. , 2008, Angewandte Chemie.

[35]  Alistair C. McKinlay,et al.  Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. , 2008, Journal of the American Chemical Society.

[36]  C. Serre,et al.  Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. , 2006, Journal of the American Chemical Society.

[37]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[38]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[39]  M. Zaworotko,et al.  Crystal engineering of a nanoscale Kagomé lattice. , 2002, Angewandte Chemie.

[40]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[41]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[42]  Lo,et al.  A chemically functionalizable nanoporous material , 1999, Science.

[43]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .