On the convergence of multi-parent genetic algorithms

This paper presents a Markov model for the convergence of multi-parent genetic algorithms (MPGAs). The proposed model formulates the variation of gene frequency caused by selection, multi-parent crossover, and mutation. In addition, it reveals the pair wise equivalence phenomenon in the number of parents and identifies the correlation between this number and the mean fitness in the OneMax problem. The good fit between theoretical and experimental results demonstrate the capability of this model. Moreover, the superiority of multi-parent crossover in convergence fitness over 2-parent crossover is validated theoretically as well as empirically

[1]  D. Hartl,et al.  Principles of population genetics , 1981 .

[2]  A. E. Eiben,et al.  Global Convergence of Genetic Algorithms: A Markov Chain Analysis , 1990, PPSN.

[3]  Ehrhard Behrends,et al.  Introduction to Markov Chains , 2000 .

[4]  H. M. Rwcp The equation for the response to selection and its use for prediction , 1997 .

[5]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[6]  A. E. Eiben,et al.  Multiparent recombination in evolutionary computing , 2002 .

[7]  Lothar Thiele,et al.  A Comparison of Selection Schemes used in Genetic Algorithms , 1995 .

[8]  José Carlos Príncipe,et al.  A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.

[9]  M. Abramowitz,et al.  Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .

[10]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[11]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[12]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  A. E. Eiben,et al.  Genetic algorithms with multi-parent recombination , 1994, PPSN.

[14]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[15]  Shigeyoshi Tsutsui,et al.  A study on the effect of multi-parent recombination in real coded genetic algorithms , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[16]  Thomas Bäck,et al.  Empirical Investigation of Multiparent Recombination Operators in Evolution Strategies , 1997, Evolutionary Computation.

[17]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[18]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[19]  T. Back Selective pressure in evolutionary algorithms: a characterization of selection mechanisms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[20]  Heinz Mühlenbein,et al.  On the Mean Convergence Time of Evolutionary Algorithms without Selection and Mutation , 1994, PPSN.

[21]  H. Grüneberg,et al.  Introduction to quantitative genetics , 1960 .

[22]  John J. Grefenstette,et al.  How Genetic Algorithms Work: A Critical Look at Implicit Parallelism , 1989, ICGA.