The Extracellular Domain of Two-component System Sensor Kinase VanS from Streptomyces coelicolor Binds Vancomycin at a Newly Identified Binding Site

[1]  A. M. Dixon,et al.  Revealing the mechanism of protein-lipid interactions for a putative membrane curvature sensor in plant endoplasmic reticulum. , 2019, Biochimica et biophysica acta. Biomembranes.

[2]  M. Hammerschlag,et al.  Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Children: a Reappraisal of Vancomycin , 2019, Current Infectious Disease Reports.

[3]  P. Loll,et al.  Vancomycin does not affect the enzymatic activities of purified VanSA , 2019, PloS one.

[4]  D. Giedroc,et al.  Structure of the Large Extracellular Loop of FtsX and Its Interaction with the Essential Peptidoglycan Hydrolase PcsB in Streptococcus pneumoniae , 2018, mBio.

[5]  S. Khalid,et al.  The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization , 2018, Cell surface.

[6]  G. Tillotson A crucial list of pathogens. , 2017, Lancet. Infectious Diseases (Print).

[7]  T. Schneider,et al.  Targeting a cell wall biosynthesis hot spot. , 2017, Natural product reports.

[8]  D. Boger,et al.  Peripheral modifications of [Ψ[CH2NH]Tpg4]vancomycin with added synergistic mechanisms of action provide durable and potent antibiotics , 2017, Proceedings of the National Academy of Sciences.

[9]  M. Phillips-Jones,et al.  Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci , 2017, Biochimica et biophysica acta. General subjects.

[10]  W. Fuller,et al.  An amphipathic α-helix directs palmitoylation of the large intracellular loop of the sodium/calcium exchanger , 2017, The Journal of Biological Chemistry.

[11]  S. Harding,et al.  Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin , 2017, Scientific Reports.

[12]  M. Mahlapuu,et al.  Antimicrobial Peptides: An Emerging Category of Therapeutic Agents , 2016, Front. Cell. Infect. Microbiol..

[13]  K. Sugase,et al.  The helical propensity of the extracellular loop is responsible for the substrate specificity of Fe(III)‐phytosiderophore transporters , 2016, FEBS letters.

[14]  Christopher P. Zschiedrich,et al.  Molecular Mechanisms of Two-Component Signal Transduction. , 2016, Journal of molecular biology.

[15]  Jongkeun Choi,et al.  Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications. , 2016, Journal of molecular biology.

[16]  S. Harding,et al.  Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions , 2016, Biochemical Society transactions.

[17]  M. Martí,et al.  Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain. , 2016, Journal of molecular biology.

[18]  G. McCabe,et al.  Effects of impaired membrane interactions on α-synuclein aggregation and neurotoxicity , 2015, Neurobiology of Disease.

[19]  J. Schnell,et al.  Solution NMR studies reveal the location of the second transmembrane domain of the human sigma-1 receptor , 2015, FEBS letters.

[20]  A. Hesketh,et al.  In Vivo Studies Suggest that Induction of VanS-Dependent Vancomycin Resistance Requires Binding of the Drug to d-Ala-d-Ala Termini in the Peptidoglycan Cell Wall , 2013, Antimicrobial Agents and Chemotherapy.

[21]  A. Mark,et al.  Vancomycin: ligand recognition, dimerization and super‐complex formation , 2013, The FEBS journal.

[22]  A. Sali,et al.  Facile backbone structure determination of human membrane proteins by NMR spectroscopy , 2012, Nature Methods.

[23]  J. Simms,et al.  Lifting the lid on GPCRs: the role of extracellular loops , 2011, British journal of pharmacology.

[24]  Søren L Pedersen,et al.  Membrane Curvature Sensing by Amphipathic Helices , 2011, The Journal of Biological Chemistry.

[25]  G. B. Golding,et al.  Antibiotic resistance is ancient , 2011, Nature.

[26]  A. Arnold,et al.  Choosing membrane mimetics for NMR structural studies of transmembrane proteins. , 2011, Biochimica et biophysica acta.

[27]  W. Kwiatkowski,et al.  Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis , 2010, Proceedings of the National Academy of Sciences.

[28]  D. Hughes,et al.  A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. , 2010, Nature chemical biology.

[29]  R. Bourret,et al.  Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins. , 2009, Journal of molecular biology.

[30]  G. Patti,et al.  Vancomycin and oritavancin have different modes of action in Enterococcus faecium. , 2009, Journal of molecular biology.

[31]  W. Hendrickson,et al.  Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS. , 2009, Structure.

[32]  Jens Meiler,et al.  Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. , 2008, Biochemistry.

[33]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[34]  M. Buttner,et al.  Vancomycin resistance VanS/VanR two-component systems. , 2008, Advances in experimental medicine and biology.

[35]  Robert A. H. White,et al.  Sensor complexes regulating two-component signal transduction. , 2007, Current opinion in structural biology.

[36]  Andrei N. Lupas,et al.  The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling , 2006, Cell.

[37]  M. Buttner,et al.  The vancomycin resistance VanRS two‐component signal transduction system of Streptomyces coelicolor , 2006, Molecular microbiology.

[38]  Patrice Courvalin,et al.  Vancomycin resistance in gram-positive cocci. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[39]  Wayne A Hendrickson,et al.  Structure of the entire cytoplasmic portion of a sensor histidine‐kinase protein , 2005, The EMBO journal.

[40]  T. Bui,et al.  Multiple protein interactions involving proposed extracellular loop domains of the tight junction protein occludin. , 2005, Molecular biology of the cell.

[41]  J. Shetty,et al.  Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus , 2003, Science.

[42]  C. A. Potter,et al.  Expression, purification and characterisation of full-length heterologously expressed histidine protein kinase RegB from Rhodobacter sphaeroides , 2002 .

[43]  M. Williamson,et al.  Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides. , 2002, Journal of molecular biology.

[44]  H. Vogel,et al.  The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. , 2001, Biochemistry.

[45]  C. Walsh,et al.  Vancomycin resistance in enterococci: reprogramming of the D-ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. , 2000, Chemistry & biology.

[46]  B. Sykes,et al.  NMR study of the differential contributions of residues of transforming growth factor alpha to association with its receptor. , 2000, Protein engineering.

[47]  J M Thornton,et al.  Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis. , 1998, Protein engineering.

[48]  M. Baptista,et al.  Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB‐type enterococci , 1997, Molecular microbiology.

[49]  M. Arthur,et al.  The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction , 1997, Journal of bacteriology.

[50]  M. Arthur,et al.  Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis , 1996, Antimicrobial agents and chemotherapy.

[51]  C. Walsh,et al.  Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. , 1996, Chemistry & biology.

[52]  Dudley H. Williams,et al.  Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics , 1995, Antimicrobial agents and chemotherapy.

[53]  C. Walsh,et al.  Overexpression, purification, and characterization of VanX, a D-, D-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147. , 1995, Biochemistry.

[54]  A. J. Shaka,et al.  Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients , 1995 .

[55]  Dudley H. Williams,et al.  Complete assignment of the 13C NMR spectrum of vancomycin , 1995 .

[56]  M. Arthur,et al.  Glycopeptide resistance mediated by enterococcal transposon Tn 1546 requires production of VanX for hydrolysis of D‐alanyl‐D‐alanine , 1994, Molecular microbiology.

[57]  H. Schägger,et al.  Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. , 1994, Analytical biochemistry.

[58]  M. Arthur,et al.  Genetics and mechanisms of glycopeptide resistance in enterococci , 1993, Antimicrobial Agents and Chemotherapy.

[59]  C. Walsh,et al.  Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. , 1993, Biochemistry.

[60]  Dudley H. Williams,et al.  The role of the sugar and chlorine substituents in the dimerization of vancomycin antibiotics , 1993 .

[61]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[62]  C. Walsh,et al.  Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. , 1991, Biochemistry.

[63]  C. Walsh,et al.  Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia coli. , 1990, Biochemistry.

[64]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[65]  Ad Bax,et al.  MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy , 1985 .

[66]  D. Williams,et al.  The structure and mode of action of glycopeptide antibiotics of the vancomycin group. , 1984, Annual review of microbiology.

[67]  J. Feeney,et al.  A 1H nuclear magnetic resonance study of the interactions of vancomycin with N-acetyl-D-alanyl-D-alanine and related peptides , 1980 .

[68]  Westhead Ew,et al.  Two aspartokinases from Escherichia coli. Nature of the inhibition and molecular changes accompanying reversible inactivation. , 1968 .

[69]  E. Westhead,et al.  Two aspartokinases from Escherichia coli. Nature of the inhibition and molecular changes accompanying reversible inactivation. , 1968, Biochemistry.