Thermal sensing in fluid at the micro-nano-scales.

Temperature is one of the most fundamental parameters for the characterization of a physical system. With rapid development of lab-on-a-chip and biology at single cell level, a great demand has risen for the temperature sensors with high spatial, temporal, and thermal resolution. Nevertheless, measuring temperature in liquid environment is always a technical challenge. Various factors may affect the sensing results, such as the fabrication parameters of built-in sensors, thermal property of electrical insulating layer, and stability of fluorescent thermometers in liquid environment. In this review, we focused on different kinds of micro/nano-thermometers applied in the thermal sensing for microfluidic systems and cultured cells. We discussed the advantages and limitations of these thermometers in specific applications and the challenges and possible solutions for more accurate temperature measurements in further studies.

[1]  Daniel J. Sadler,et al.  A miniaturized cyclic PCR device - Modeling and experiments , 2002 .

[2]  Wenbin Cao,et al.  Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor. , 2009, Biomicrofluidics.

[3]  Takahito Ono,et al.  Pico calorimeter for detection of heat produced in an individual brown fat cell , 2012 .

[4]  Jeong-Yeol Yoon,et al.  A portable, shock-proof, surface-heated droplet PCR system for Escherichia coli detection. , 2015, Biosensors & bioelectronics.

[5]  J. Weiel,et al.  Development of Infrared Imaging to Measure Thermogenesis in Cell Culture: Thermogenic Effects of Uncoupling Protein-2, Troglitazone, and β-Adrenoceptor Agonists , 1998, Pharmaceutical Research.

[6]  M. Gaitan,et al.  Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. , 2001, Analytical chemistry.

[7]  J. Cuevas,et al.  Heat dissipation in atomic-scale junctions , 2013, Nature.

[8]  Sebastian Volz,et al.  Thermal nanosystems and nanomaterials , 2009 .

[9]  Qing Chen,et al.  A nano-stripe based sensor for temperature measurement at the submicrometer and nano scales. , 2014, Small.

[10]  D. Gamelin,et al.  Tunable dual emission in doped semiconductor nanocrystals. , 2010, Nano letters.

[11]  S. Kumagai,et al.  Thermocouples fabricated on trench sidewall in microfluidic channel bonded with film cover , 2015 .

[12]  Y. Harada,et al.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy , 2012, Nature Communications.

[13]  Qintao Zhang,et al.  Temperature analysis of continuous-flow micro-PCR based on FEA , 2002 .

[14]  H. John Crabtree,et al.  Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. , 2003, Analytical chemistry.

[15]  R. Mathies,et al.  Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. , 2001, Lab on a chip.

[16]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[17]  Romain Quidant,et al.  Mapping intracellular temperature using green fluorescent protein. , 2012, Nano letters.

[18]  Inchul Yang,et al.  Performance evaluation of thermal cyclers for PCR in a rapid cycling condition. , 2008, BioTechniques.

[19]  Qing Chen,et al.  Thin-Film Thermocouple Array for Time-Resolved Local Temperature Mapping , 2011, IEEE Electron Device Letters.

[20]  R. Pease,et al.  Transient temperature measurements of resist heating using nanothermocouples , 2003 .

[21]  Shengyong Xu,et al.  A multilayered microfluidic system with functions for local electrical and thermal measurements , 2012 .

[22]  L. Ferreira,et al.  Activated Radiationless Decay of Rhodamine 3B: Polarity and Friction Effects , 2000 .

[23]  Stephen Quake,et al.  A nanoliter rotary device for polymerase chain reaction , 2002, Electrophoresis.

[24]  Emmanuel Delamarche,et al.  Lab-on-a-chip devices , 2015 .

[25]  Kai Zhang,et al.  Single quantum dots as local temperature markers. , 2007, Nano letters.

[26]  Tae-Jun Ha,et al.  Highly deformable liquid-state heterojunction sensors , 2014, Nature Communications.

[27]  Jae-Sung Park,et al.  Dual Micro-Thermopile Based Biocalorimeter for Enzyme-Substrate Reaction , 2007, 2007 IEEE Sensors.

[28]  K. G. Kreider,et al.  Microhotplate Temperature Sensor Calibration and BIST , 2011, Journal of research of the National Institute of Standards and Technology.

[29]  P. Schueler,et al.  Interaction and effect of annealing temperature on primers used in differential display RT-PCR. , 1998, Nucleic acids research.

[30]  Valérie Cabuil,et al.  Synthesis of iron oxide nanoparticles in a microfluidic device: preliminary results in a coaxial flow millichannel. , 2008, Chemical communications.

[31]  Kenneth G. Kreider,et al.  Transient thermal response of plasma-sprayed zirconia measured with thin-film thermocouples , 1990 .

[32]  Shengyong Xu,et al.  An Extremely Simple Thermocouple Made of a Single Layer of Metal , 2012, Advanced materials.

[33]  Xiaochun Li,et al.  Experimental Investigations of Laser Micromachining of Nickel Using Thin Film Micro Thermocouples , 2008 .

[34]  P. Bénit,et al.  Mitochondria are physiologically maintained at close to 50 ̊C , 2018 .

[35]  V. Pathirana,et al.  Experimental, analytical and numerical investigation of non-linearity of SOI diode temperature sensors at extreme temperatures , 2015 .

[36]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[37]  R. Mathies,et al.  Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system , 2000 .

[38]  Guoqing Hu,et al.  Electrokinetically controlled real-time polymerase chain reaction in microchannel using Joule heating effect , 2006 .

[39]  Y. Mori,et al.  Fluorescent sensors reveal subcellular thermal changes. , 2015, Current opinion in biotechnology.

[40]  A. Patapoutian,et al.  Trp ion channels and temperature sensation. , 2006, Annual review of neuroscience.

[41]  P. Sheng,et al.  Micro Thermoindicators and Optical-electronic Temperature Control for Microfluidic Applications , 2007 .

[42]  Jingkun Guo,et al.  Trapping and Driving Individual Charged Micro-particles in Fluid with an Electrostatic Device , 2016, Nano-micro letters.

[43]  Bruce M. Spiegelman,et al.  Towards a molecular understanding of adaptive thermogenesis , 2000, Nature.

[44]  Shweta Sharma,et al.  Development of SYBR Green I based real-time PCR assays for quantitative detection of Rice tungro bacilliform virus and Rice tungro spherical virus. , 2012, Journal of virological methods.

[45]  R. Zengerle,et al.  Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. , 2010, Chemical Society reviews.

[46]  Nancy Y. Ip,et al.  Precise temperature control of microfluidic chamber for gas and liquid phase reactions , 2000 .

[47]  I. Singh,et al.  Fever, hyperthermia and the heat shock response , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[48]  John P. Wikswo,et al.  Heat conduction calorimeter for massively parallel high throughput measurements with picoliter sample volumes , 2004 .

[49]  K. Okabe,et al.  Intracellular thermometry with fluorescent sensors for thermal biology , 2018, Pflügers Archiv - European Journal of Physiology.

[50]  S. Tadigadapa,et al.  Calorimetric biosensors with integrated microfluidic channels. , 2004, Biosensors & bioelectronics.

[51]  Viktor Stein,et al.  Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. , 2009, Analytical chemistry.

[52]  Gwo-Bin Lee,et al.  A microfluidic system for automatic cell culture , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[53]  P. Childs,et al.  Review of temperature measurement , 2000 .

[54]  Bingcheng Lin,et al.  Simply and reliably integrating micro heaters/sensors in a monolithic PCR‐CE microfluidic genetic analysis system , 2009, Electrophoresis.

[55]  Gang Li,et al.  Linearly enhanced response of thermopower in cascaded array of dual-stripe single-metal thermocouples , 2017 .

[56]  Kyung-In Jang,et al.  3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium , 2014, Nature Communications.

[57]  D. G. Walker,et al.  Review of electronic transport models for thermoelectric materials , 2008 .

[58]  James K. Gimzewski,et al.  A femtojoule calorimeter using micromechanical sensors , 1994 .

[59]  Luke P. Lee,et al.  Integrated microfluidic cell culture and lysis on a chip. , 2007, Lab on a chip.

[60]  H. Mao,et al.  Reusable platforms for high-throughput on-chip temperature gradient assays. , 2002, Analytical chemistry.

[61]  T. Jayakumar,et al.  Infrared thermography for condition monitoring – A review , 2013 .

[62]  S. Kim,et al.  Diode temperature sensor array for measuring micro-scale surface temperatures with high resolution , 2008 .

[63]  J. El-Ali,et al.  Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor , 2004 .

[64]  I. Rodríguez,et al.  Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis , 2003, Electrophoresis.

[65]  N. Waterman,et al.  Tissue temperatures in localized pyogenic infections. , 1969, American journal of surgery.

[66]  Koichi Hishida,et al.  Measurements of thermally stratified pipe flow using image-processing techniques , 1993 .

[67]  Wei Qiang Sun,et al.  Key Issues in Microscale Temperature Sensing with Thermocouple Array , 2011 .

[68]  M. Berezin,et al.  Nanothermometry: From Microscopy to Thermal Treatments. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[69]  Xiaoye Huo,et al.  A sub-200 nanometer wide 3D stacking thin-film temperature sensor , 2016 .

[70]  Takahito Ono,et al.  Highly sensitive thermometer using a vacuum-packed Si resonator in a microfluidic chip for the thermal measurement of single cells. , 2016, Lab on a chip.

[71]  Gang Li,et al.  Alternative method to fabricate microdevices on a freestanding Si3N4 window , 2017 .

[72]  Hiroaki Misawa,et al.  A heater-integrated transparent microchannel chip for continuous-flow PCR , 2002 .

[73]  F. Kulzer,et al.  Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. , 2009, Optics express.

[74]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[75]  R. Ringert,et al.  Microcalorimetric investigations on isolated tumorous and non-tumorous tissue samples , 1993 .

[76]  E. Lane,et al.  Direct organelle thermometry with fluorescence lifetime imaging microscopy in single myotubes. , 2016, Chemical communications.

[77]  M. Jung,et al.  Thermoelectric Properties of a Single Crystalline Ag2Te Nanowire , 2017 .

[78]  Klony Lieberman,et al.  Ultrafast response micropipette-based submicrometer thermocouple , 1995 .

[79]  F. Teng,et al.  Luminescent Ru(bpy)32+-doped silica nanoparticles for imaging of intracellular temperature , 2014, Microchimica Acta.

[80]  James P Landers,et al.  Infrared temperature control system for a completely noncontact polymerase chain reaction in microfluidic chips. , 2007, Analytical chemistry.

[81]  Kagan Kerman,et al.  Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. , 2005, Biosensors & bioelectronics.

[82]  H. Riel,et al.  One-dimensional behavior and high thermoelectric power factor in thin indium arsenide nanowires , 2015 .

[83]  Daniel C Leslie,et al.  Platinum nanoparticle-facilitated reflective surfaces for non-contact temperature control in microfluidic devices for PCR amplification. , 2012, Lab on a chip.

[84]  S. Takeoka,et al.  A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells. , 2015, Chemical communications.

[85]  Ce Zhang,et al.  High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies. , 2012, Biomicrofluidics.

[86]  Xudong Guo,et al.  Intracellular fluorescent temperature probe based on triarylboron substituted poly N-isopropylacrylamide and energy transfer. , 2015, Analytical chemistry.

[87]  Pierre-Olivier Chapuis,et al.  Scanning thermal microscopy: A review , 2015 .

[88]  A. G. McNamara Semiconductor Diodes and Transistors as Electrical Thermometers , 1962 .

[89]  Florin Udrea,et al.  Silicon diode temperature sensors - A review of applications , 2015 .

[90]  B. Nilius,et al.  Sensing with TRP channels , 2005, Nature chemical biology.

[91]  John A Rogers,et al.  Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring , 2016, Advanced healthcare materials.

[92]  N. Inada,et al.  A cationic fluorescent polymeric thermometer for the ratiometric sensing of intracellular temperature. , 2015, The Analyst.

[93]  Ning Gu,et al.  Micro/Nanoscale Thermometry for Cellular Thermal Sensing. , 2016, Small.

[94]  Takatoki Yamamoto,et al.  PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. , 2002, Lab on a chip.

[95]  Teruo Fujii,et al.  Microfabricated flow-through device for DNA amplification—towards in situ gene analysis , 2004 .

[96]  F. Henn,et al.  Fabrication of Microfluidic Devices for the study of Ion transport through Single-Walled Carbon Nanotubes , 2016 .

[97]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[98]  V. Baier,et al.  A new micro-fluid chip calorimeter for biochemical applications , 2006 .

[99]  J. Knox Thermal effects and band spreading in capillary electro-separation , 1988 .

[100]  H. Rigneault,et al.  Reply to: "Validating subcellular thermal changes revealed by fluorescent thermosensors" and "The 105 gap issue between calculation and measurement in single-cell thermometry" , 2015, Nature Methods.

[101]  Jean-Christophe Batsale,et al.  Processing of temperature field in chemical microreactors with infrared thermography , 2006 .

[102]  T. J. Praisner,et al.  Temperature sensing with thermochromic liquid crystals , 2001 .

[103]  Kenjiro Watanabe,et al.  Infrared laser–mediated gene induction in targeted single cells in vivo , 2009, Nature Methods.

[104]  Hermann Wätzig,et al.  Infrared‐based temperature measurements in capillary electrophoresis , 2011, Electrophoresis.

[105]  H. Rigneault,et al.  A critique of methods for temperature imaging in single cells , 2014, Nature Methods.

[106]  S. Yoshida,et al.  Cationic fluorescent polymeric thermometers with the ability to enter yeast and mammalian cells for practical intracellular temperature measurements. , 2013, Analytical chemistry.

[107]  Alan G. R. Evans,et al.  Design, fabrication, and packaging of closed-chamber PCR chips for DNA amplification , 2000, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[108]  C. Backhouse,et al.  Dynamic temperature measurement in microfluidic devices using thermochromic liquid crystals. , 2008, Lab on a chip.

[109]  Daniel Jaque,et al.  Luminescence nanothermometry. , 2012, Nanoscale.

[110]  Fan Yang,et al.  Measurement of local temperature increments induced by cultured HepG2 cells with micro-thermocouples in a thermally stabilized system , 2017, Scientific Reports.

[111]  J R Scherer,et al.  Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. , 2004, Analytical chemistry.

[112]  X. Huo,et al.  Performance of Nano-Submicron-Stripe Pd Thin-Film Temperature Sensors , 2016, Nanoscale Research Letters.

[113]  Christopher R. Lowe,et al.  Silicon microchambers for DNA amplification , 1998 .

[114]  Nam-Trung Nguyen,et al.  Microcalorimeter: Design considerations, materials and examples , 2016 .

[115]  James Christofferson,et al.  Microscale and Nanoscale Thermal Characterization Techniques , 2007 .

[116]  D L Alkon,et al.  Thermal imaging of receptor-activated heat production in single cells. , 1998, Biophysical journal.

[117]  S. Costa,et al.  Electronic excited-state behavior of rhodamine 3B in AOT reverse micelles sensing contact ion pair to solvent separated ion pair interconversion. , 2010, The journal of physical chemistry. B.

[118]  Aaron M. Streets,et al.  Chip in a lab: Microfluidics for next generation life science research. , 2013, Biomicrofluidics.

[119]  Robin Fortt,et al.  Thermal optimisation of the Reimer-Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor. , 2005, Lab on a chip.

[120]  C. Ivory,et al.  Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening , 1990 .

[121]  T Kitamori,et al.  Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser. , 2000, Journal of chromatography. A.

[122]  Jungchul Lee,et al.  Design, Fabrication, and Characterization of Liquid Metal Microheaters , 2014, Journal of Microelectromechanical Systems.

[123]  Y. Harada,et al.  Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. , 2009, Journal of the American Chemical Society.

[124]  Wei Zhang,et al.  Liquid Metal Actuator for Inducing Chaotic Advection , 2014 .

[125]  Alan Mathewson,et al.  Rapid amplification for the detection of Mycobacterium tuberculosis using a non-contact heating method in a silicon microreactor based thermal cycler , 2004 .

[126]  S. Ishiwata,et al.  Highly thermosensitive Ca2+ dynamics in a HeLa cell through IP3 receptors , 2009, HFSP journal.

[127]  Chunsun Zhang,et al.  PCR microfluidic devices for DNA amplification. , 2006, Biotechnology advances.

[128]  Ulrich Dillner,et al.  Chip elements for fast thermocycling , 1997 .

[129]  Daniel Jaque,et al.  Fluorescent nanothermometers for intracellular thermal sensing. , 2014, Nanomedicine.

[130]  Paul Watts,et al.  The application of microreactors for small scale organic synthesis , 2005 .

[131]  Minoru Taya,et al.  Design of Micro-Temperature Sensor Array With Thin Film Thermocouples , 2005 .

[132]  Reza Abdolvand,et al.  Parylene supported 20um*20um uncooled thermoelectric infrared detector with high fill factor , 2012, Defense + Commercial Sensing.

[133]  Vikram C. Sundar,et al.  Quantum-dot optical temperature probes , 2003 .

[134]  Fumihito Arai,et al.  Temperature changes in brown adipocytes detected with a bimaterial microcantilever. , 2014, Biophysical Journal.

[135]  Micro real-time PCR device using a circulation pump , 2017 .

[136]  Satoshi Arai,et al.  Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. , 2015, Chemical communications.

[137]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[138]  L. Harris,et al.  The Technique of Sputtering Sensitive Thermocouples , 1934 .

[139]  Ferdinandus,et al.  Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors. , 2015, The Analyst.

[140]  Jianqing Wang,et al.  A high precision apparatus for intracellular thermal response at single-cell level , 2015, Nanotechnology.

[141]  Hye Jung Cho,et al.  Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip , 2002 .

[142]  Josiane P Lafleur,et al.  Recent advances in lab-on-a-chip for biosensing applications. , 2016, Biosensors & bioelectronics.

[143]  Hiroyuki Nakamura,et al.  Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. , 2004, Chemical communications.

[144]  J. Köhler,et al.  Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. , 2001, Lab on a chip.

[145]  Luke P. Lee,et al.  In situ thermal diagnostics of the micro-PCR system using liquid crystals , 2005 .

[146]  Jung-Sik Kim,et al.  Cell integrated multi-junction thermocouple array for Solid Oxide Fuel Cell temperature sensing: N+1 architecture , 2016 .

[147]  D R Meldrum,et al.  Capillary tube resistive thermal cycling. , 1998, Analytical chemistry.

[148]  Dennis E. Discher,et al.  Temperature‐Controlled Assembly and Release from Polymer Vesicles of Poly(ethylene oxide)‐block‐ poly(N‐isopropylacrylamide) , 2006 .

[149]  Bill W Colston,et al.  A reusable flow-through polymerase chain reaction instrument for the continuous monitoring of infectious biological agents. , 2003, Analytical chemistry.

[150]  M. A. Northrup,et al.  Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. , 1996, Analytical chemistry.

[151]  Meng Gao,et al.  Development of a fast thermal response microfluidic system using liquid metal , 2016 .

[152]  Hiromi Imamura,et al.  Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells , 2013, Nature Methods.

[153]  N. Inada,et al.  A Cell-Permeable Fluorescent Polymeric Thermometer for Intracellular Temperature Mapping in Mammalian Cell Lines , 2015, PloS one.

[154]  S. Pang,et al.  Neural Probes with Integrated Temperature Sensors for Monitoring Retina and Brain Implantation and Stimulation , 2017, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[155]  C. Dekker,et al.  Streaming currents in a single nanofluidic channel. , 2005, Physical review letters.

[156]  Huanyu Cheng,et al.  Bioresorbable silicon electronic sensors for the brain , 2016, Nature.

[157]  Aaron R Wheeler,et al.  A microfluidic platform for complete mammalian cell culture. , 2010, Lab on a chip.

[158]  Meng Wang,et al.  Determining intracellular temperature at single-cell level by a novel thermocouple method , 2011, Cell Research.

[159]  P. Iskrenović Systematic error of diode thermometer. , 2009, The Review of scientific instruments.

[160]  Hideaki Maeda,et al.  Enzymatic Processing in Microfluidic Reactors , 2008, Biotechnology & genetic engineering reviews.

[161]  Yong Xu,et al.  A MEMS Thermal Biosensor for Metabolic Monitoring Applications , 2008, Journal of Microelectromechanical Systems.

[162]  Jost Goettert,et al.  Polymer-based microfluidic devices for biomedical applications , 2003, SPIE MOEMS-MEMS.

[163]  J. Weaver Bioimaging: Hot nanoparticles light up cancer. , 2010, Nature Nanotechnology.

[164]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[165]  A. Majumdar SCANNING THERMAL MICROSCOPY , 1999, Annual Review of Materials Science.

[166]  B. Lin,et al.  Cell-based high content screening using an integrated microfluidic device. , 2007, Lab on a chip.

[167]  Ryuichi Tanimoto,et al.  Detection of Temperature Difference in Neuronal Cells , 2016, Scientific Reports.

[168]  Yan Tie,et al.  Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing , 2002 .

[169]  O. Wolfbeis,et al.  Luminescent probes and sensors for temperature. , 2013, Chemical Society reviews.

[170]  N. R. Kulish,et al.  Limiting characteristics of diode temperature sensors , 2000 .

[171]  D. Chiu,et al.  Selective electroless and electrolytic deposition of metal for applications in microfluidics: fabrication of a microthermocouple. , 2003, Analytical chemistry.

[172]  M G Mack,et al.  Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)--side effects, complications and results. , 2001, European journal of ultrasound : official journal of the European Federation of Societies for Ultrasound in Medicine and Biology.

[173]  Michael P. Harold,et al.  Micromachined reactors for catalytic partial oxidation reactions , 1997 .

[174]  Wonhee Lee,et al.  High-sensitivity microfluidic calorimeters for biological and chemical applications , 2009, Proceedings of the National Academy of Sciences.

[175]  J. Kuo,et al.  Bioresorbable Silicon Electronic Sensors for the Brain. , 2016, Neurosurgery.

[176]  Douglas L. Jones,et al.  Technology development of integrated multi-modal and flexible tactile skin for robotics applications , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[177]  Manjunath C. Rajagopal,et al.  Fabrication and characterization of thermocouple probe for use in intracellular thermometry , 2018 .

[178]  P. Docker,et al.  Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling. , 2010, Lab on a chip.

[179]  Roland Zengerle,et al.  Microfluidic platforms for lab-on-a-chip applications. , 2007, Lab on a chip.

[180]  P. Abgrall,et al.  Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .

[181]  A M Stark,et al.  The use of thermovision in the detection of early breast cancer , 1974, Cancer.

[182]  Hao He,et al.  Development of a Temperature Control System Based on DSP for a Real-Time PCR Instrument , 2013 .

[183]  Youn Tae Kim,et al.  Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. , 2004, Lab on a chip.

[184]  Takahito Ono,et al.  Evaluation of bimaterial cantilever beam for heat sensing at atmospheric pressure. , 2010, The Review of scientific instruments.

[185]  Gwo-Bin Lee,et al.  Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases. , 2005, Biosensors & bioelectronics.

[186]  A. Benayas,et al.  High-resolution confocal fluorescence thermal imaging of tightly pumped microchip Nd:YAG laser ceramics , 2012 .

[187]  N. Kotov,et al.  Thermometer design at the nanoscale , 2007 .

[188]  Dong-Chul Han,et al.  PDMS-based micro PCR chip with Parylene coating , 2003 .

[189]  Liwei Lin,et al.  Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. , 2011, ACS nano.

[190]  Weiqiang Sun,et al.  Unexpected size effect in the thermopower of thin-film stripes , 2011 .

[191]  Xiaochun Li,et al.  Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes , 2006 .

[192]  Gang Li,et al.  To save half contact pads in 2D mapping of local temperatures with a thermocouple array , 2017 .

[193]  H. Olsson,et al.  Microcalorimetric investigation of cell metabolism in tumour cells from patients with non-Hodgkin lymphoma (NHL). , 2009, Scandinavian journal of haematology.

[194]  S. Tang,et al.  Liquid metal enabled pump , 2014, Proceedings of the National Academy of Sciences.