Bioprocess optimization under uncertainty using ensemble modeling.

The performance of model-based bioprocess optimizations depends on the accuracy of the mathematical model. However, models of bioprocesses often have large uncertainty due to the lack of model identifiability. In the presence of such uncertainty, process optimizations that rely on the predictions of a single "best fit" model, e.g. the model resulting from a maximum likelihood parameter estimation using the available process data, may perform poorly in real life. In this study, we employed ensemble modeling to account for model uncertainty in bioprocess optimization. More specifically, we adopted a Bayesian approach to define the posterior distribution of the model parameters, based on which we generated an ensemble of model parameters using a uniformly distributed sampling of the parameter confidence region. The ensemble-based process optimization involved maximizing the lower confidence bound of the desired bioprocess objective (e.g. yield or product titer), using a mean-standard deviation utility function. We demonstrated the performance and robustness of the proposed strategy in an application to a monoclonal antibody batch production by mammalian hybridoma cell culture.

[1]  Urmila M. Diwekar,et al.  Robust design using an efficient sampling technique , 1996 .

[2]  Sang Ok Song,et al.  Ensembles of signal transduction models using Pareto Optimal Ensemble Techniques (POETs). , 2010, Biotechnology journal.

[3]  Hua Wu,et al.  Parametric sensitivity in chemical systems , 1999 .

[4]  M. Alamir,et al.  Robust constrained control algorithm for general batch processes , 1999 .

[5]  V. Hatzimanikatis,et al.  Modeling of uncertainties in biochemical reactions , 2011, Biotechnology and bioengineering.

[6]  Pu Li,et al.  Using Sparse-Grid Methods To Improve Computation Efficiency in Solving Dynamic Nonlinear Chance-Constrained Optimization Problems , 2011 .

[7]  Julio R. Banga,et al.  An evolutionary method for complex-process optimization , 2010, Comput. Oper. Res..

[8]  Marc Hafner,et al.  Efficient characterization of high-dimensional parameter spaces for systems biology , 2011, BMC Systems Biology.

[9]  Efstratios N. Pistikopoulos,et al.  'Closing the loop' in biological systems modeling - From the in silico to the in vitro , 2011, Autom..

[10]  David W.T. Rippin,et al.  Simulation of single- and multiproduct batch chemical plants for optimal design and operation☆ , 1983 .

[11]  Richard D. Braatz,et al.  Probabilistic analysis and control of uncertain dynamic systems: Generalized polynomial chaos expansion approaches , 2012, 2012 American Control Conference (ACC).

[12]  M. Soroush,et al.  Multi‐rate nonlinear state and parameter estimation in a bioreactor , 1999 .

[13]  Z. Nagy,et al.  Distributional uncertainty analysis using power series and polynomial chaos expansions , 2007 .

[14]  Jan Van Impe,et al.  Robust multi-objective dynamic optimization of chemical processes using the Sigma Point method , 2016 .

[15]  J. Stelling,et al.  Ensemble modeling for analysis of cell signaling dynamics , 2007, Nature Biotechnology.

[16]  A. Rathore,et al.  Quality by design for biopharmaceuticals , 2009, Nature Biotechnology.

[17]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[18]  Soha Hassoun,et al.  Probabilistic strain optimization under constraint uncertainty , 2013, BMC Systems Biology.

[19]  I. Birol,et al.  Metabolic control analysis under uncertainty: framework development and case studies. , 2004, Biophysical journal.

[20]  Kwang-Ki K. Kim,et al.  Wiener's Polynomial Chaos for the Analysis and Control of Nonlinear Dynamical Systems with Probabilistic Uncertainties [Historical Perspectives] , 2013, IEEE Control Systems.

[21]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[22]  J. Liao,et al.  Ensemble modeling of metabolic networks. , 2008, Biophysical journal.

[23]  Efstratios N. Pistikopoulos,et al.  Systematic development of predictive mathematical models for animal cell cultures , 2010, Comput. Chem. Eng..

[24]  John J. Peterson,et al.  Batch-to-Batch Variation: A Key Component for Modeling Chemical Manufacturing Processes , 2015 .

[25]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[26]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[27]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[28]  Ljubisa Miskovic,et al.  iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks. , 2016, Metabolic engineering.

[29]  Yang Liu,et al.  REDEMPTION: reduced dimension ensemble modeling and parameter estimation , 2015, Bioinform..

[30]  Lazaros G. Papageorgiou,et al.  Integrated Optimization of Upstream and Downstream Processing in Biopharmaceutical Manufacturing under Uncertainty: A Chance Constrained Programming Approach , 2016 .

[31]  Krist V. Gernaey,et al.  A framework for model-based optimization of bioprocesses under uncertainty: Lignocellulosic ethanol production case , 2012, Comput. Chem. Eng..

[32]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[33]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[34]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[35]  Hector Budman,et al.  Robust optimization of chemical processes using Bayesian description of parametric uncertainty , 2014 .

[36]  Edda Klipp,et al.  Automated Ensemble Modeling with modelMaGe: Analyzing Feedback Mechanisms in the Sho1 Branch of the HOG Pathway , 2011, PloS one.

[37]  Rudiyanto Gunawan,et al.  Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles , 2012, Metabolites.

[38]  Lazaros G. Papageorgiou,et al.  Robustness metrics for dynamic optimization models under parameter uncertainty , 1998 .

[39]  B. Rustem Stochastic and robust control of nonlinear economic systems , 1994 .