A platypus-inspired electro-mechanosensory finger for remote control and tactile sensing

[1]  Huaping Liu,et al.  Soft Magnetic Fingertip With Particle-Jamming Structure for Tactile Perception and Grasping , 2023, IEEE Transactions on Industrial Electronics.

[2]  Shuangqing Fan,et al.  An Artificial Neuromuscular System for Bimodal Human–Machine Interaction , 2023, Advanced Functional Materials.

[3]  Bojian Zhang,et al.  A Dual-Responsive Artificial Skin for Tactile and Touchless Interfaces. , 2023, Small.

[4]  Jie Chen,et al.  A Self-Powered, Highly Embedded and Sensitive Tribo-Label-Sensor for the Fast and Stable Label Printer , 2022, Nano-Micro Letters.

[5]  Samuel E. Root,et al.  A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition , 2022, Nature Electronics.

[6]  K. Cho,et al.  Crocodile-Skin-Inspired Omnidirectionally Stretchable Pressure Sensor. , 2022, Small.

[7]  Huichan Zhao,et al.  Conformable and Compact Multiaxis Tactile Sensor for Human and Robotic Grasping via Anisotropic Waveguides , 2022, Advanced Materials Technologies.

[8]  Yanlong Tai,et al.  An artificial remote tactile device with 3D depth-of-field sensation , 2022, Science advances.

[9]  Luying Yi,et al.  An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation , 2022, Nature Electronics.

[10]  Shiwu Zhang,et al.  Aquatic Skin Enabled by Multi‐Modality Iontronic Sensing (Adv. Funct. Mater. 48/2022) , 2022, Advanced Functional Materials.

[11]  Chi Zhang,et al.  Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces , 2022, Nature Communications.

[12]  Jingquan Liu,et al.  Flexible Pressure Sensors with Combined Spraying and Self-Diffusion of Carbon Nanotubes. , 2022, ACS applied materials & interfaces.

[13]  Wenbo Ding,et al.  Underwater wireless communication via TENG-generated Maxwell’s displacement current , 2022, Nature Communications.

[14]  M. Kovač,et al.  Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces , 2022, Science Robotics.

[15]  Xiong Pu,et al.  Bioinspired soft electroreceptors for artificial precontact somatosensation , 2022, Science advances.

[16]  Sandra Q. Liu,et al.  GelSight Fin Ray: Incorporating Tactile Sensing into a Soft Compliant Robotic Gripper , 2022, 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft).

[17]  Xiaorui Ye,et al.  All-textile sensors for boxing punch force and velocity detection , 2022, Nano Energy.

[18]  Minyi Xu,et al.  Underwater Bionic Whisker Sensor Based on Triboelectric Nanogenerator for Passive Vortex Perception , 2022, SSRN Electronic Journal.

[19]  Yunlong Zi,et al.  A flexible triboelectric tactile sensor for simultaneous material and texture recognition , 2022, Nano Energy.

[20]  Zhong Lin Wang,et al.  Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing , 2022, Nano Energy.

[21]  Jie Hao,et al.  A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments , 2022 .

[22]  Won Kyung Do,et al.  DenseTact: Optical Tactile Sensor for Dense Shape Reconstruction , 2022, 2022 International Conference on Robotics and Automation (ICRA).

[23]  Yiming Liu,et al.  Electronic skin as wireless human-machine interfaces for robotic VR , 2022, Science advances.

[24]  Georg Martius,et al.  A soft thumb-sized vision-based sensor with accurate all-round force perception , 2021, Nature Machine Intelligence.

[25]  Sihong Wang,et al.  A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins , 2021, Science advances.

[26]  Yan-cheng Wang,et al.  Finger‐Skin‐Inspired Flexible Optical Sensor for Force Sensing and Slip Detection in Robotic Grasping , 2021, Advanced Materials Technologies.

[27]  Wenzhen Yuan,et al.  Soft magnetic skin for super-resolution tactile sensing with force self-decoupling , 2021, Science Robotics.

[28]  K. Cho,et al.  Fingerpad‐Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition , 2021, Advanced science.

[29]  W. Wen,et al.  Tilted magnetic micropillars enabled dual-mode sensor for tactile/touchless perceptions , 2020 .

[30]  Benjamin C. K. Tee,et al.  Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins , 2020, Nature Communications.

[31]  Lianqing Zhu,et al.  Ultralow Quiescent Power‐Consumption Wake‐Up Technology Based on the Bionic Triboelectric Nanogenerator , 2020, Advanced science.

[32]  Stefano Mintchev,et al.  A portable three-degrees-of-freedom force feedback origami robot for human–robot interactions , 2019, Nature Machine Intelligence.

[33]  R. D’Andrea,et al.  Towards vision-based robotic skins: a data-driven, multi-camera tactile sensor , 2019, 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft).

[34]  Xu Wang,et al.  A bimodal soft electronic skin for tactile and touchless interaction in real time , 2019, Nature Communications.

[35]  Byeong Wan An,et al.  Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature , 2018, Nature Communications.

[36]  Daniil Karnaushenko,et al.  Magnetosensitive e-skins with directional perception for augmented reality , 2018, Science Advances.

[37]  D. B. Leitch,et al.  Molecular basis of ancestral vertebrate electroreception , 2017, Nature.

[38]  Edward H. Adelson,et al.  Microgeometry capture using an elastomeric sensor , 2011, ACM Trans. Graph..

[39]  S. Collin,et al.  Electrosensory pore distribution and feeding in the megamouth shark Megachasma pelagios (Lamniformes: Megachasmidae) , 2011 .

[40]  J. Pettigrew,et al.  Electroreception in monotremes. , 1999, The Journal of experimental biology.

[41]  J. Pettigrew,et al.  The sensory world of the platypus. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  G. Langner,et al.  Electroreception and electrolocation in platypus , 1986, Nature.