Small-angle X-ray scattering study of a Rex family repressor: conformational response to NADH and NAD+ binding in solution.

[1]  A. Soares,et al.  Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. , 2010, Molecular cell.

[2]  Manuel Liebeke,et al.  Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus , 2010, Molecular microbiology.

[3]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[4]  D. Logan,et al.  Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex , 2008, Molecular microbiology.

[5]  M. Blackledge,et al.  Structural characterization of flexible proteins using small-angle X-ray scattering. , 2007, Journal of the American Chemical Society.

[6]  H. Komori,et al.  Crystal structure of TTHA1657 (AT‐rich DNA‐binding protein; p25) from Thermus thermophilus HB8 at 2.16 Å resolution , 2006, Proteins.

[7]  C. von Wachenfeldt,et al.  Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. , 2005, Microbiology.

[8]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[9]  W. F. Li,et al.  Structural features of thermozymes. , 2005, Biotechnology advances.

[10]  Jeffrey Green,et al.  Bacterial redox sensors , 2004, Nature Reviews Microbiology.

[11]  L. Paoletti,et al.  Oxygen Regulates Invasiveness and Virulence of Group B Streptococcus , 2003, Infection and Immunity.

[12]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[13]  M. Paget,et al.  A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2) , 2003, The EMBO journal.

[14]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[15]  G. S. Bell,et al.  Stepwise adaptations of citrate synthase to survival at life's extremes. From psychrophile to hyperthermophile. , 2002, European journal of biochemistry.

[16]  Stefano Pascarella,et al.  Comparative structural analysis of psychrophilic and meso‐ and thermophilic enzymes , 2002, Proteins.

[17]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[18]  Y. Fujita,et al.  Cytochrome bd Biosynthesis inBacillus subtilis: Characterization of thecydABCD Operon , 1998, Journal of bacteriology.

[19]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[20]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[21]  J. Reid,et al.  DOI : will be inserted by hand later ) X-ray emission from expanding cocoons , 2008 .

[22]  M G Rossmann,et al.  Comparison of super-secondary structures in proteins. , 1973, Journal of molecular biology.

[23]  D. Harrison,et al.  Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures of microorganisms. , 1970, Applied microbiology.

[24]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[25]  Clifton E. Barry,et al.  Tuberculosis — metabolism and respiration in the absence of growth , 2005, Nature Reviews Microbiology.

[26]  Stephen K Burley,et al.  X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing. , 2005, Structure.