Stromatolite‐rimmed thrombolite columns and domes constructed by microstromatolites, calcimicrobes and sponges in late Cambrian biostromes, Texas, USA

Microbial carbonates formed stromatolitic, thrombolitic, dendrolitic and maceriate (mazelike) fabrics in shallow marine Cambrian–Early Ordovician carbonates encircling Laurentia. However, poor preservation often hinders recognition of their specific components. Well‐preserved examples of normal shallow marine limestones in the ca 490 Ma upper Cambrian Point Peak Member, Wilberns Formation, central Texas, include stromatolitic cones, steep‐sided laminated rimmed columns with grainy interiors, and laminated and maceriate domes. Together these form decimetre to metre‐thick biostromes. In these examples, a single component, microstromatolite, on its own or with minor calcimicrobes, creates macroscopic stromatolitic, dendrolitic, thrombolitic and maceriate fabrics. Microstromatolites constructed upward widening stromatolitic cones that developed into columns with laminated rims surrounding slightly depressed interiors. These columns accumulated allochthonous sediment by a ‘bucket effect’. Their interiors contain either clusters of dendrolitic microstromatolite or ragged columns of laminated stromatolite–sponge biolithite, and are often characterized by a ‘mottled’ fabric that superficially resembles thrombolite. This mottling was formed by localized dolomitization around millimetric burrows that otherwise do not appear to have significantly influenced the biolithite fabric. Calcimicrobes, including cyanobacteria (Razumovskia) and microproblematica (Renalcis and Tarthinia), impart a mesoscopic clotted appearance to maceriate fabric, and locally to column rims, both of which are dominated by microstromatolite. Similar component‐fabric relationships should be recognizable in rimmed columns and domes that were locally abundant elsewhere in Cambrian–Early Ordovician shallow carbonate seas.

[1]  R. Riding,et al.  Recognizing sponge in Spongiostroma Gürich, 1906 from the Mississippian of Belgium , 2022, Journal of Paleontology.

[2]  J. Reitner,et al.  Identification and Current Palaeobiological Understanding of “Keratosa”-Type Nonspicular Demosponge Fossils in Carbonates: With a New Example from the Lowermost Triassic, Armenia , 2022, bioRxiv.

[3]  S. Kershaw,et al.  Microbialite development through the Ediacaran–Cambrian transition in China: Distribution, characteristics, and paleoceanographic implications , 2021 .

[4]  E. Turner Possible poriferan body fossils in early Neoproterozoic microbial reefs , 2021, Nature.

[5]  Guan Wang,et al.  Different accretion and diagenetic patterns within the fabrics of the Permian–Triassic boundary microbialites on the Leye isolated carbonate platform, South China Block , 2021, Journal of Palaeogeography.

[6]  Jeong‐Hyun Lee,et al.  Keratose sponge–microbial consortia in stromatolite-like columns and thrombolite-like mounds of the Lower Ordovician (Tremadocian) Mungok Formation, Yeongwol, Korea , 2021 .

[7]  R. Riding,et al.  Keratolite–stromatolite consortia mimic domical and branched columnar stromatolites , 2021 .

[8]  A. Penny,et al.  EARLY–MIDDLE ORDOVICIAN SEASCAPE-SCALE AGGREGATION PATTERN OF SPONGE-RICH REEFS ACROSS THE LAURENTIA PALEOCONTINENT , 2020, Palaios.

[9]  R. Riding,et al.  The ‘classic stromatolite’ Cryptozoön is a keratose sponge‐microbial consortium , 2020, Geobiology.

[10]  R. Riding,et al.  Hybrid Carbonates: in situ abiotic, microbial and skeletal co-precipitates , 2020, Earth-Science Reviews.

[11]  D. Lehrmann,et al.  Controls on microbial and oolitic carbonate sedimentation and stratigraphic cyclicity within a mixed carbonate‐siliciclastic system: Upper Cambrian Wilberns Formation, Llano Uplift, Mason County, Texas, USA , 2020 .

[12]  M. V. Kranendonk,et al.  Diverse thrombolites from the c. 2.4 Ga Turee Creek Group, Western Australia , 2020 .

[13]  K. Karlstrom,et al.  Redefining the Tonto Group of Grand Canyon and recalibrating the Cambrian time scale , 2020, Geology.

[14]  D. Lehrmann,et al.  Late Cambrian microbial build‐ups, Llano Area, Central Texas: A three‐phase morphological evolution , 2019, Sedimentology.

[15]  Guo Wei,et al.  Petrography and origin of the Lower Ordovician microbial carbonates in the Songzi Area of Hubei Province, middle Yangtze region, China , 2019, Petroleum Science.

[16]  R. Riding,et al.  Lithistid sponge-microbial reefs, Nevada, USA: Filling the late Cambrian ‘reef gap’ , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[17]  P. Harris,et al.  Upscaling lithology and porosity-type fractions from the micro- to the core-scale with thin-section petrography, dual-energy computed tomography, and rock typing: Creation of diagenesis and porosity-type logs , 2019, Interpretation.

[18]  J. Hurowitz,et al.  Reassessing evidence of life in 3,700-million-year-old rocks of Greenland , 2018, Nature.

[19]  R. Riding,et al.  Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs , 2018 .

[20]  G. Gehrels,et al.  Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons , 2018, Nature Geoscience.

[21]  Majie Fan,et al.  Paleozoic sediment dispersal before and during the collision between Laurentia and Gondwana in the Fort Worth Basin, USA , 2018 .

[22]  D. Newell,et al.  Great Salt Lake (Utah) Microbialite δ13C, δ18O, and δ15N Record Fluctuations in Lake Biogeochemistry Since the Late Pleistocene , 2017 .

[23]  J. Woo,et al.  Cambrian Reefs in the Western North China Platform, Wuhai, Inner Mongolia , 2016 .

[24]  J. Reitner,et al.  ‘Stromatolites’ built by sponges and microbes – a new type of Phanerozoic bioconstruction , 2016 .

[25]  L. Brand,et al.  LITHISTID SPONGE-MICROBIAL REEF-BUILDING COMMUNITIES CONSTRUCT LAMINATED, UPPER CAMBRIAN (FURONGIAN) ‘STROMATOLITES' , 2016, Palaios.

[26]  M. Ikehara,et al.  Lithostratigraphic analysis of a new stromatolite–thrombolite reef from across the rise of atmospheric oxygen in the Paleoproterozoic Turee Creek Group, Western Australia , 2016, Geobiology.

[27]  D. Sumner,et al.  Thrombolite fabrics and origins: Influences of diverse microbial and metazoan processes on Cambrian thrombolite variability in the Great Basin, California and Nevada , 2016 .

[28]  Ken P. Coulson Microbialite elongation by means of coalescence: an example from the middle Furongian (upper Cambrian) Notch Peak Formation of western Utah , 2016, Facies.

[29]  J. Wulff Sponge Contributions to the Geology and Biology of Reefs: Past, Present, and Future , 2016 .

[30]  N. Planavsky,et al.  Protracted development of bioturbation through the early Palaeozoic Era , 2015 .

[31]  S. Chough,et al.  The middle–late Cambrian reef transition and related geological events: A review and new view , 2015 .

[32]  S. Choh,et al.  Untangling intricate microbial–sponge frameworks: The contributions of sponges to Early Ordovician reefs , 2015 .

[33]  W. E. Ham Algal Origin of the "Birdseye" Limestone in the McLish Formation , 2015 .

[34]  J. Woo,et al.  Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform , 2014 .

[35]  D. Canfield,et al.  Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation , 2014 .

[36]  Peter A. Cawood,et al.  Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA , 2014 .

[37]  J. Woo,et al.  Calcified microbial reefs in Cambrian Series 2, North China Platform: Implications for the evolution of Cambrian calcified microbes , 2014 .

[38]  R. Riding,et al.  Late Jurassic Epiphyton-like cyanobacteria: Indicators of long-term episodic variation in marine bioinduced microbial calcification? , 2014 .

[39]  J. Reitner,et al.  First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction , 2014, Naturwissenschaften.

[40]  S. Chough,et al.  FURONGIAN (LATE CAMBRIAN) SPONGE–MICROBIAL MAZE-LIKE REEFS IN THE NORTH CHINA PLATFORM , 2014 .

[41]  Zhang Wenhao,et al.  Environment controls on Mesoproterozoic thrombolite morphogenesis: A case study from the North China Platform , 2013 .

[42]  M. Bouxsein,et al.  Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas , 2013, Proceedings of the National Academy of Sciences.

[43]  R. Reid,et al.  Microbial mat controls on infaunal abundance and diversity in modern marine microbialites , 2012, Geobiology.

[44]  B. Lieberman,et al.  Chapter 19 Global Cambrian trilobite palaeobiogeography assessed using parsimony analysis of endemicity , 2013 .

[45]  Cara L. Harwood,et al.  Origins of Microbial Microstructures in the Neoproterozoic Beck Spring Dolomite: Variations in Microbial Community and Timing of Lithification , 2012 .

[46]  Shanan E. Peters,et al.  Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion , 2012, Nature.

[47]  L. Collins,et al.  Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia , 2012 .

[48]  James F. Miller,et al.  The Great American Carbonate Bank in the Miogeocline of Western Central Utah: Tectonic Influences on Sedimentation , 2012 .

[49]  W. Morgan,et al.  The Great American carbonate bank : the geology and economic resources of the Cambrian-Ordovician sauk megasequence of Laurentia , 2012 .

[50]  J. L. Wilson,et al.  The Geology of the Arbuckle Group in the Midcontinent: Sequence Stratigraphy, Reservoir Development, and the Potential for Hydrocarbon Exploration , 2012 .

[51]  J. Repetski,et al.  Biostratigraphy and Chronostratigraphy of the Cambrian–Ordovician Great American Carbonate Bank , 2012 .

[52]  W. Morgan Sequence Stratigraphy of the Great American Carbonate Bank , 2012 .

[53]  Trond H. Torsvik,et al.  The Palaeozoic geography of Laurentia and western Laurussia: A stable craton with mobile margins , 2011 .

[54]  R. Riding The Nature of Stromatolites: 3,500 Million Years of History and a Century of Research , 2011 .

[55]  S. Chough,et al.  Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong Province, China , 2010 .

[56]  Jun Cao,et al.  Early Ordovician reef construction in Anhui Province, South China: A geobiological transition from microbial- to metazoan-dominant reefs , 2009 .

[57]  N. Planavsky,et al.  Taphonomy of Modern Marine Bahamian Microbialites , 2009 .

[58]  W. Carlson,et al.  Mesoproterozoic plate tectonics: A collisional model for the Grenville-aged orogenic belt in the Llano uplift, central Texas , 2008 .

[59]  Geologia Croatica Abiogenic , microbial and hybrid authigenic carbonate crusts : components of Precambrian stromatolites , 2008 .

[60]  Benjamin F. Dattilo,et al.  NEOTYPE AND REDESCRIPTION OF THE UPPER CAMBRIAN ANTHASPIDELLID SPONGE, WILBERNICYATHUS DONEGANI WILSON, 1950 , 2007, Journal of Paleontology.

[61]  R. Riding The term stromatolite: towards an essential definition , 2007 .

[62]  R. Shapiro,et al.  FAVOSAMACERIA COOPERI NEW GROUP AND FORM: A WIDELY DISPERSED, TIME-RESTRICTED THROMBOLITE , 2006, Journal of Paleontology.

[63]  Erik Flügel,et al.  Microfacies of Carbonate Rocks: Analysis, Interpretation and Application , 2004 .

[64]  S. Rowland,et al.  Microbialite Reefs at the Close of the Proterozoic Eon: The Middle Member Deep Spring Formation at Mt. Dunfee, Nevada , 2002 .

[65]  R. Shapiro,et al.  Reef Patterns and Environmental Influences in the Cambrian and Earliest Ordovician , 2002 .

[66]  Idaho. Miocene lacustrine algal reefs southwestern Snake River Plain , , 2002 .

[67]  L. Middleton Middle Cambrian offshore microbialites and shoaling successions, western Wyoming Implications for regional paleography , 2001 .

[68]  A. Zhuravlev Paleoecology of Cambrian Reef Ecosystems , 2001 .

[69]  J. Schopf Solution to Darwin's dilemma: discovery of the missing Precambrian record of life. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[70]  A. Knoll,et al.  Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia , 2000, Paleobiology.

[71]  G. Narbonne,et al.  Taphonomic Control on Microstructure in Early Neoproterozoic Reefal Stromatolites and Thrombolites , 2000 .

[72]  R. Shapiro A Comment on the Systematic Confusion of Thrombolites , 2000 .

[73]  R. Shapiro,et al.  Microbialite Morphostratigraphy as a Tool for Correlating Late Cambrian–Early Ordovician Sequences , 2000, The Journal of Geology.

[74]  Robert Riding,et al.  Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .

[75]  G. Narbonne,et al.  Framework Composition of Early Neoproterozoic Calcimicrobial Reefs and Associated Microbialites, Mackenzie Mountains, N.W.T., Canada , 2000 .

[76]  J. Grotzinger,et al.  Precambrian Carbonates: Evolution of Understanding , 2000 .

[77]  M. A. Semikhatov,et al.  Proterozoic Stromatolite Taxonomy and Biostratigraphy , 2000 .

[78]  S. Mosher Tectonic evolution of the southern Laurentian Grenville orogenic belt , 1998 .

[79]  J. Mckenzie,et al.  Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas , 1998 .

[80]  J. Mckenzie,et al.  Messinian stromatolite‐thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? , 1997 .

[81]  K. Walker,et al.  Selective dolomitization of Cambrian microbial carbonate deposits; a key to mechanisms and environments of origin , 1997 .

[82]  A. Zhuravlev Reef ecosytem recovery after the Early Cambrian extinction , 1996, Geological Society, London, Special Publications.

[83]  R. Steneck,et al.  Growth History of Stromatolites in a Holocene Fringing Reef, Stocking Island, Bahamas , 1996 .

[84]  G. Arp Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, Southern Germany) , 1995 .

[85]  U. Mayr,et al.  Kilometre-Scale Microbial Buildups in a Rimmed Carbonate Platform Succession, Arctic Canada: New Insight on Lower Ordovician Reef Facies , 1995 .

[86]  R. Steneck,et al.  Modern marine stromatolites in the Exuma Cays, Bahamas: Uncommonly common , 1995 .

[87]  A. Rozanov,et al.  Latest Middle Cambrian metazoan reef from northern Iran , 1995, Geological Magazine.

[88]  R. Shapiro,et al.  Stratigraphic setting of a subtidal stromatolite field, Iguana Cay, Exumas, Bahamas , 1995 .

[89]  F. Brunton,et al.  Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors , 1994 .

[90]  C. Armella Thrombolitic-Stromatolitic Cycles of the Cambro-Ordovician Boundary Sequence, Precordillera Oriental Basin, Western Argentina , 1994 .

[91]  G. Narbonne,et al.  Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada , 1993 .

[92]  R. Burne,et al.  Microatoll microbialites of Lake Clifton, Western Australia: Morphological analogues ofCryptozoön proliferumHall, the first formally-named stromatolite , 1993 .

[93]  Linda C. Kah,et al.  Early Proterozoic (1.9 Ga) thrombolites of the Rocknest formation, Northwest Territories, Canada , 1992 .

[94]  N. Walker Middle Proterozoic geologic evolution of Llano uplift, Texas: Evidence from U-Pb zircon geochronometry , 1992 .

[95]  B. Winsborough,et al.  Bahamian giant stromatolites: microbial composition of surface mats , 1991, Geological Magazine.

[96]  R. Riding,et al.  Oolite stromatolites and thrombolites, Miocene, Spain: analogues of Recent giant Bahamian examples , 1991 .

[97]  J. Reitner,et al.  Fossil and Recent Sponges , 1991 .

[98]  R. Riding Classification of Microbial Carbonates , 1991 .

[99]  N. James,et al.  Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia1 , 1990 .

[100]  Gerald R. Smith,et al.  Miocene lacustrine algal reefs southwestern Snake River Plain, Idaho , 1990 .

[101]  C. Kerans Depositional systems and karst geology of the Ellenburger Group (Lower Ordovician), subsurface west Texas , 1990 .

[102]  J. D. Aitken,et al.  Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, northwestern Canada , 1989 .

[103]  B. Pratt,et al.  Coral-Renalcis-Thrombolite Reef Complex of Early Ordovician Age, St. George Group, Western Newfoundland , 1988 .

[104]  G. D. Jackson,et al.  Proterozoic ministromatolites with radial‐fibrous fabric , 1987 .

[105]  P. Sheehan,et al.  The Evolution of Reef Communities , 1987 .

[106]  M. Portnoy A study of two isolated Cambrian stromatolitic outcrops, Mason and McCulloch counties, Texas , 1987 .

[107]  W. Lanier Approximate growth rates of early proterozoic microstromatolites as deduced by biomass productivity , 1986 .

[108]  J. Grotzinger Evolution of early Proterozoic passive-margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada , 1986 .

[109]  N. James,et al.  Thrombolites and stromatolites; two distinct types of microbial structures , 1986 .

[110]  M. Walter,et al.  Links between the rise of the metazoa and the decline of stromatolites , 1985 .

[111]  A. M. Thorne,et al.  Biostratigraphic significance of stromatolites in upward shallowing sequences of the early proterozoic duck creek dolomite, Western Australia , 1985 .

[112]  R. Riding,et al.  Morphological Groups and Series in Cambrian Calcareous Algae , 1985 .

[113]  B. Pratt Epiphyton and Renalcis; diagenetic microfossils from calcification of coccoid blue-green algae , 1984 .

[114]  J. Grotzinger,et al.  Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada , 1983 .

[115]  B. Pratt,et al.  Cryptalgal-metazoan bioherms of early Ordovician age in the St George Group, western Newfoundland , 1982 .

[116]  F. Harrison Living and Fossil Sponges: Notes for a Short Course.Willard D. Hartman , Jobst W. Wendt , Felix Wiedenmayer , Robert N. Ginsburg , Pamela Reid , 1981 .

[117]  David I. Groves,et al.  Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia , 1981 .

[118]  James F. Miller,et al.  Upper Cambrian-Lower Ordovician Notch Peak Formation in western Utah , 1980 .

[119]  N. James,et al.  LOWER CAMBRIAN BIOHERMS: PIONEER REEFS OF THE PHANEROZOIC , 1980 .

[120]  Michael E. Taylor,et al.  New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland; evidence for the early history of polyplacophoran mollusks , 1979 .

[121]  R. Riding Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater, Upper Miocene, southern Germany , 1979 .

[122]  B. Rosen,et al.  The Nature and Significance of Microatolls , 1978 .

[123]  H. Hofmann On Aphebian stromatolites and Riphean stromatolite stratigraphy , 1977 .

[124]  V. E. Barnes,et al.  The Moore Hollow Group of Central Texas , 1977 .

[125]  C. Monty Chapter 5.1 The Origin and Development of Cryptalgal Fabrics , 1976 .

[126]  R. Ross Ordovician Sedimentation in the Western United States , 1976 .

[127]  H. Hofmann Stratiform Precambrian stromatolites, Belcher Islands, Canada; relations between silicified microfossils and microstructure , 1975 .

[128]  T. D. Brock,et al.  Bacterial Stromatolites: Origin of Laminations , 1974, Science.

[129]  C. Monty Precambrian background and Phanerozoic history of stromatolitic communities, an overview , 1974 .

[130]  H. Hofmann Stromatolites: Characteristics and utility , 1973 .

[131]  K. Wolf Carbonate sediments and their diagenesis , 1973 .

[132]  H. Chafetz Morphological evolution of Cambrian algal mounds in response to a change in depositional environment , 1973 .

[133]  P. Hoffman Proterozoic Stromatolites of Cyclic Shelf, Mounded Shelfedge and Turbidite Offshelf Facies, Northwestern Canadian Shield: ABSTRACT , 1972 .

[134]  S M Awramik,et al.  Precambrian Columnar Stromatolite Diversity: Reflection of Metazoan Appearance , 1971, Science.

[135]  W. Ahr Paleoenvironment, algal structures, and fossil algae in the upper Cambrian of central Texas , 1971 .

[136]  P. Garrett Phanerozoic Stromatolites: Noncompetitive Ecologic Restriction by Grazing and Burrowing Animals , 1970, Science.

[137]  H. Hofmann Stromatolites from the Proterozoic Animikie and Sibley groups, Ontario , 1969 .

[138]  E. Shinn Practical Significance of Birdseye Structures in Carbonate Rocks , 1968 .

[139]  J. D. Aitken Classification and Environmental Significance of Cryptalgal Limestones and Dolomites, with Illustrations from the Cambrian and Ordovician of Southwestern Alberta , 1967 .

[140]  J. Cowie The Cambrian period , 1964, Geological Society, London, Special Publications.

[141]  L. L. Sloss Sequences in the Cratonic Interior of North America , 1963 .

[142]  J. A. Donaldson Stromatolites in the Denault Formation, Marion Lake, Coast of Labrador, Newfoundland , 1963 .

[143]  D. W. Boyd,et al.  Shallow-Water Geology and Environments of Alacran Reef Complex, Campeche Bank, Mexico , 1962 .

[144]  B. W. Logan,et al.  Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia , 1961, The Journal of Geology.

[145]  L. Illing 2 Deposition and Diagenesis of Some Upper Palaeozoic Carbonate Sediments in Western Canada , 1959 .

[146]  R. Ginsburg,et al.  The Influence of Marine bottom Communities on the Depositional Environment of Sediments , 1958, The Journal of Geology.

[147]  J. L. Wilson AN UPPER CAMBRIAN PLEOSPONGID ( , 1950 .

[148]  P. Cloud,et al.  The Ellenburger group of central Texas , 1948 .

[149]  P. Cloud,et al.  STRATIGRAPHY OF THE UPPER CAMBRIAN, LLANO UPLIFT, TEXAS , 1947 .

[150]  A. J. Crowley,et al.  Lower Ordovician and Upper Cambrian Subsurface Subdivisions in North-Central Texas , 1945 .

[151]  F. Romberg,et al.  Correlation of gravity observations with the geology of the Smoothingiron granite mass, Llano County, Texas , 1944 .

[152]  P. Cloud Notes on stromatolites , 1942 .

[153]  J. Bridge,et al.  Faunal Correlation of the Ellenburger Limestone of Texas , 1932 .

[154]  H. Roddy Concretions in Streams Formed by the Agency of Blue Green Algæ and Related Plants , 1915 .

[155]  Ernst Kalkowsky Oolith und Stromatolith im norddeutschen Buntsandstein. , 1908 .

[156]  Georg Julius Ernst Gürich Les spongiostromides du viséen de la province de Namur , 1906 .

[157]  H. A. Nicholson,et al.  A Monograph of the Silurian Fossils of the Girvan District in Ayrshire, with Special Reference to those contained in the “Gray Collection” , 1879, Nature.