Wavelet stabilization of the Lagrange multiplier method

Summary. We propose here a stabilization strategy for the Lagrange multiplier formulation of Dirichlet problems. The stabilization is based on the use of equivalent scalar products for the spaces $H^{1/2}(\partial\Omega)$ and $H^{-1/2}(\partial\Omega)$, which are realized by means of wavelet functions. The resulting stabilized bilinear form is coercive with respect to the natural norm associated to the problem. A uniformly coercive approximation of the stabilized bilinear form is constructed for a wide class of approximation spaces, for which an optimal error estimate is provided. Finally, a formulation is presented which is obtained by eliminating the multiplier by static condensation. This formulation is closely related to the Nitsche's method for solving Dirichlet boundary value problems.

[1]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[2]  S. Bertoluzza Stabilization by multiscale decomposition , 1998 .

[3]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[4]  M. R. Dorr,et al.  A domain decomposition preconditioner with reduced rank interdomain coupling , 1991 .

[5]  Claudio Canuto,et al.  The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[8]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[9]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[10]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[11]  Charbel Farhat,et al.  Using a reduced number of Lagrange multipliers for assembling parallel incomplete field finite element approximations , 1992 .

[12]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[13]  Angela Kunoth,et al.  Multilevel preconditioning — Appending boundary conditions by Lagrange multipliers , 1995, Adv. Comput. Math..

[14]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .