Efficient anisotropic adaptive discretization of the cardiovascular system

[1]  J. Womersley Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known , 1955, The Journal of physiology.

[2]  F. White Viscous Fluid Flow , 1974 .

[3]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[4]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[5]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[6]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[7]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[8]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[9]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[10]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[11]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[12]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[13]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[14]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[15]  Paul-Louis George TET MESHING: Construction, Optimization and Adaptation , 1999 .

[16]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[17]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[18]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[20]  Rainald Löhner,et al.  Generation of non‐isotropic unstructured grids via directional enrichment , 2000 .

[21]  Raúl A. Feijóo,et al.  Adaptive finite element computational fluid dynamics using an anisotropic error estimator , 2000 .

[22]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[23]  Yannis Kallinderis,et al.  Hybrid grid generation for turbomachinery and aerospace applications , 2000 .

[24]  Mark S. Shephard,et al.  Boundary layer mesh generation for viscous flow simulations , 2000 .

[25]  C. R. Ethier,et al.  Requirements for mesh resolution in 3D computational hemodynamics. , 2001, Journal of biomechanical engineering.

[26]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[27]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[28]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[29]  Mark S. Shephard,et al.  On Anisotropic Mesh Generation and Quality Control in Complex Flow Problems , 2001, IMR.

[30]  Paul-Louis George,et al.  An efficient algorithm for 3D adaptive meshing , 2001 .

[31]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[32]  G. Kunert Toward anisotropic mesh construction and error estimation in the finite element method , 2002 .

[33]  Kazuhiro Nakahashi,et al.  Unstructured Mesh Generation For Viscous Flow Computations , 2002, IMR.

[34]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[35]  Mark S. Shephard,et al.  Accounting for curved domains in mesh adaptation , 2003 .

[36]  Frédéric Alauzet,et al.  Anisotropic Mesh Adaptation for Transient Flows Simulations , 2003, IMR.

[37]  Mark S. Shephard,et al.  Mesh modification procedures for general 3d non-manifold domains , 2003 .

[38]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[39]  Xiangrong Li,et al.  Anisotropic adaptive finite element method for modelling blood flow , 2005, Computer methods in biomechanics and biomedical engineering.

[40]  Yannis Kallinderis,et al.  A dynamic adaptation scheme for general 3-D hybrid meshes , 2005 .

[41]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[42]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[43]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[44]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .