Reduction of Single Event Kinetic Models by Rigorous Relumping: Application to Catalytic Reforming

Modeling of refining processes using metal-acid bifunctional catalysts involves an exponentially increasing number of species and reactions, which may rapidly exceed several thousands for complex industrial feedstocks. When building a model for such a process, a priori lumped kinetic models by chemical family do no longer meet the current requirements in terms of simulation details, predictive power and extrapolability. Due to the large number of elementary steps occurring in bifunctional catalysis, it would be quite unrealistic to manually build a detailed kinetic network of this scale. Hence, computer generation of the reaction network according to simple rules offer an elegant solution in such a case. Nevertheless, it remains difficult to determine and solve the kinetic equations, mainly due to the lack of analytical detail required by a detailed model. For several refining processes, however, reasonable assumptions on the equilibria between species allow to perform an a posteriori relumping of species, thus reducing the network size substantially while retaining a kinetic network between lumps that is strictly equivalent to the detailed network. This paper describes a network generation tool and the a posteriori relumping method associated with the single-event kinetic modeling methodology. This a posteriori relumping approach is illustrated for and successfully applied to the kinetic modeling of catalytic reforming reactions.

[1]  David Mautner Himmelblau,et al.  Process analysis by statistical methods , 1970 .

[2]  Paul I. Barton,et al.  Computer Construction of Detailed Chemical Kinetic Models for Gas-Phase Reactors , 2001 .

[3]  G. Froment,et al.  Reforming of C6 hydrocarbons on a PtAl2O3 catalyst , 1982 .

[4]  Guy Marin,et al.  Single-Event Microkinetic Model for Fischer−Tropsch Synthesis on Iron-Based Catalysts , 2008 .

[5]  J. Warnatz,et al.  Automatic generation of reaction mechanisms for the description of the oxidation of higher hydrocarbons , 1990 .

[6]  Rainer Herges,et al.  Computer-assisted solution of chemical problems : the historical development and the present state of the art of a new discipline of chemistry , 1993 .

[7]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[8]  Mark M. Meerschaert,et al.  Mathematical Modeling , 2014, Encyclopedia of Social Network Analysis and Mining.

[9]  Venkat Venkatasubramanian,et al.  An Intelligent System for Reaction Kinetic Modeling and Catalyst Design , 2004 .

[10]  P. Jacobs,et al.  Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-H-ZSM-22 , 2003 .

[11]  E. V. Slivinskii,et al.  Construction of the reaction networks for heterogeneous catalytic reactions: Fischer—Tropsch synthesis and related reactions , 2002 .

[12]  G. Froment,et al.  Single-Event Rate Parameters for Paraffin Hydrocracking on a Pt/US-Y Zeolite , 1995 .

[13]  Kevin Van Geem,et al.  Automatic reaction network generation using RMG for steam cracking of n‐hexane , 2006 .

[14]  Raymond S H Yang,et al.  BioMOL: a computer-assisted biological modeling tool for complex chemical mixtures and biological processes at the molecular level. , 2002, Environmental health perspectives.

[15]  A single-event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation , 2007 .

[16]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—III. An example: alkylation of olefins , 1997 .

[17]  G. F. Froment,et al.  The Development and use of Rate Equations for Catalytic Refinery Processes , 1989 .

[18]  G. Froment,et al.  Kinetic Modeling of Coke Formation and Deactivation in the Catalytic Cracking of Vacuum Gas Oil , 2003 .

[19]  Paul H. Schipper,et al.  Kinptr (Mobil's Kinetic Reforming Model): A Review Of Mobil's Industrial Process Modeling Philosophy , 1987 .

[20]  L. Broadbelt,et al.  Mechanistic Modeling of Lubricant Degradation. 2. The Autoxidation of Decane and Octane , 2008 .

[21]  Thanh N. Truong,et al.  Application of Chemical Graph Theory for Automated Mechanism Generation , 2003, J. Chem. Inf. Comput. Sci..

[22]  L. Broadbelt,et al.  Detailed Kinetic Modeling of Silicon Nanoparticle Formation Chemistry via Automated Mechanism Generation , 2004 .

[23]  G. Froment Fundamental Kinetic Modeling of Complex Processes , 1991 .

[24]  William H. Green,et al.  Rate-based screening of pressure-dependent reaction networks , 2001 .

[25]  Abdullah M. Aitani,et al.  Catalytic Naphtha Reforming, Revised and Expanded , 2007 .

[26]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[27]  Michael T. Klein,et al.  Computer-assisted mechanistic modeling of n-hexadecane hydroisomerization over various bifunctional catalysts , 1999 .

[28]  P. Jacobs,et al.  Relumped single-event microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores , 2004 .

[29]  G. Froment,et al.  Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil , 1999 .

[30]  Stephen B. Jaffe,et al.  Extension of structure-oriented lumping to vacuum residua , 2005 .

[31]  D. L. Miller,et al.  Comprehensive kinetic model for the low temperature oxidation of hydrocarbons , 1997 .

[32]  Peter B. Ayscough,et al.  An expert system for hydrocarbon pyrolysis reactions , 1988 .

[33]  Gilbert F. Froment,et al.  Single Event Kinetic Modeling of Complex Catalytic Processes , 2005 .

[34]  R. J. Quann,et al.  Modeling the chemistry of complex petroleum mixtures. , 1998, Environmental health perspectives.

[35]  Johann Gasteiger,et al.  Computer‐Assisted Planning of Organic Syntheses: The Second Generation of Programs , 1996 .

[36]  Linda J. Broadbelt,et al.  Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates , 1994 .

[37]  Gilbert F. Froment,et al.  Fundamental Kinetic Modeling of Catalytic Reforming , 2009 .

[38]  G. Froment,et al.  A generalized mechanistic kinetic model for the hydroisomerization and hydrocracking of long-chain paraffins , 2007 .

[39]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—II. Molecule manipulation and reaction application algorithms , 1997 .

[40]  G. Froment,et al.  Kinetic Modeling of Paraffins Hydrocracking based upon Elementary Steps and the Single Event Concept. , 1999 .

[41]  P. Galtier,et al.  Fischer-Tropsch synthesis: Development of a microkinetic model for metal catalysis , 2006 .

[42]  Guy Marin,et al.  Challenges of Modeling Steam Cracking of Heavy Feedstocks , 2007 .

[43]  Pierre-Alexandre Glaude,et al.  Modeling of the oxidation of n-octane and n-decane using an automatic generation of mechanisms , 1998 .

[44]  P. Jacobs,et al.  Mechanism of the paring reaction of naphtenes , 1996 .

[45]  Guy Marin,et al.  Single-Event MicroKinetics for coke formation in catalytic cracking , 2005 .

[46]  L. Broadbelt,et al.  Mechanistic modeling of polymer pyrolysis: Polypropylene , 2003 .

[47]  G. Maire,et al.  Metal Catalysed Skeletal Reactions of Hydrocarbons , 1984 .

[48]  Tiziano Faravelli,et al.  Low-temperature combustion: Automatic generation of primary oxidation reactions and lumping procedures , 1995 .

[49]  J. Ancheyta-Juarez,et al.  Modeling and Simulation of Four Catalytic Reactors in Series for Naphtha Reforming , 2001 .

[50]  S. Ernst,et al.  Peculiarities in the conversion of naphthenes on binfunctional catalysts , 1984 .

[51]  J. Sinfelt,et al.  KINETICS OF n-PENTANE ISOMERIZATION OVER Pt-Al2O3 CATALYST , 1960 .

[52]  Charles K. Westbrook,et al.  Hydrocarbon ignition: Automatic generation of reaction mechanisms and applications to modeling of engine knock , 1992 .

[53]  Michael T. Klein,et al.  Computer assisted modeling of gas oil Fluid Catalytic Cracking (FCC) , 1997 .

[54]  Edward S. Blurock,et al.  Reaction: System for Modeling Chemical Reactions , 1995, J. Chem. Inf. Comput. Sci..

[55]  F. J. Krambeck,et al.  6 Development of mobil's kinetic reforming model , 1980 .

[56]  R. Burch,et al.  Platinum-tin reforming catalysts: II. Activity and selectivity in hydrocarbon reactions , 1981 .

[57]  E. V. Slivinskii,et al.  Construction of the reaction networks for heterogeneous catalytic reactions: Fischer—Tropsch synthesis and related reactions , 2002 .

[58]  G. Froment,et al.  Kinetics of methylcyclohexane dehydrogenation on sulfided commercial platinum/alumina and platinum-rhenium/alumina catalysts , 1986 .

[59]  William H. Green,et al.  Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis , 2003 .

[60]  Warren R. True,et al.  Global capacity growth slows, but Asian refineries bustle , 2010 .

[61]  G. É. Vléduts,et al.  Concerning one system of classification and codification of organic reactions , 1963, Inf. Storage Retr..

[62]  Raúl E. Valdés-Pérez,et al.  Oxidative carbonylation of phenylacetylene catalyzed by Pd(II) and Cu(I): Experimental tests of forty-one computer-generated mechanistic hypotheses , 1998 .

[63]  Juan C. Chavarría-Hernández,et al.  Single-event-lumped-parameter hybrid (SELPH) model for non-ideal hydrocracking of n-octane , 2008 .

[64]  F. P. Di Maio,et al.  KING, a KInetic Network Generator , 1992 .

[65]  G. Froment,et al.  Computer generation of reaction schemes and rate equations for thermal cracking , 1988 .

[66]  L. Broadbelt,et al.  Mechanistic Modeling of Lubricant Degradation. 1. Structure−Reactivity Relationships for Free-Radical Oxidation , 2008 .

[67]  Gilbert F. Froment,et al.  Mechanistic Kinetic Modeling of the Hydrocracking of Complex Feedstocks, such as Vacuum Gas Oils , 2007 .

[68]  M. A. Baltanás,et al.  Modelling of n-hexadecane hydroisomerization and hydrocracking reactions on a Mo/Hβ-alumina Bi-functional catalyst, using the single event concept , 2004 .

[69]  Thanh N. Truong,et al.  Automated mechanism generation: From symbolic calculation to complex chemistry , 2006 .

[70]  M. Klein,et al.  Automated model building and modeling of alcohol oxidation in high temperature water , 1998 .

[71]  R. J. Quann,et al.  Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures , 1992 .

[72]  Gilbert F. Froment,et al.  Kinetic modeling of acid-catalyzed oil refining processes , 1999 .

[73]  P. Galtier,et al.  Single-event microkinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures , 2007 .

[74]  Gilbert F. Froment,et al.  Alkylation on Solid Acids. Part 2. Single-Event Kinetic Modeling , 2006 .

[75]  G. Froment,et al.  Analysis of Fundamental Reaction Rates in the Methanol-to-Olefins Process on ZSM-5 as a Basis for Reactor Design and Operation , 2004 .

[76]  Pierre-Alexandre Glaude,et al.  Computer tools for modelling the chemical phenomena related to combustion , 2000 .

[77]  Stephen B. Jaffe,et al.  Building useful models of complex reaction systems in petroleum refining , 1996 .

[78]  J. R. Kittrell,et al.  Mathematical Modeling of Chemical Reactions , 1970 .

[79]  Linda J. Broadbelt,et al.  Mechanistic Modeling of Polymer Degradation: A Comprehensive Study of Polystyrene , 2002 .

[80]  P. Jacobs,et al.  A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites , 2000 .

[81]  Eric Fontain,et al.  The generation of reaction networks with RAIN. 1. The reaction generator , 1991, J. Chem. Inf. Comput. Sci..

[82]  G. Froment,et al.  Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34 , 2004 .

[83]  Jing Song,et al.  Development of Automatic Chemical Reaction Mechanism Generation Software Using Object-Oriented Technology , 2003 .

[84]  G. Christensen,et al.  Future directions in modeling the FCC process: An emphasis on product quality , 1999 .

[85]  G. Mills,et al.  Houdriforming Reactions) Catalytic Mechanism , 1953 .

[86]  Linda J. Broadbelt,et al.  Computer Generation of Reaction Mechanisms Using Quantitative Rate Information: Application to Long-Chain Hydrocarbon Pyrolysis , 2000 .

[87]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—I. Reaction description language , 1997 .

[88]  Linda J. Broadbelt,et al.  Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution , 2009 .

[89]  G. Marin,et al.  Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysts , 2003 .

[90]  Raúl E. Valdés-Pérez,et al.  Computer-Aided Mechanism Elucidation of Acetylene Hydrocarboxylation to Acrylic Acid Based on a Novel Union of Empirical and Formal Methods , 1997 .

[91]  Pierre-Alexandre Glaude,et al.  Modeling of the gas-phase oxidation of cyclohexane , 2006 .

[92]  G. Froment,et al.  Computer-generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins , 1984 .

[93]  Gilbert F. Froment,et al.  Kinetic modeling of the thermal cracking of hydrocarbons. 1. Calculation of frequency factors , 1988 .

[94]  B. Gates,et al.  Chemistry of catalytic processes , 1979 .

[95]  G. Froment,et al.  Kinetics of the reforming of C7 hydrocarbons on a commercial PtRe/Al2O3 catalyst , 1986 .

[96]  Linda J. Broadbelt,et al.  Detailed mechanistic modeling of polymer degradation : application to polystyrene , 2001 .

[97]  Linda J. Broadbelt,et al.  Molecular Modeling in Heavy Hydrocarbon Conversions , 2020 .

[98]  Tamás Turányi,et al.  Chapter 4 Mathematical tools for the construction, investigation and reduction of combustion mechanisms , 1997 .

[99]  R. F. Sullivan,et al.  A New Reaction That Occurs in the Hydrocracking of Certain Aromatic Hydrocarbons , 1961 .

[100]  Gilbert F. Froment,et al.  Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization , 1989 .

[101]  Wei Wei,et al.  Detailed kinetic models for catalytic reforming , 2005 .

[102]  Jean-Loup Faulon,et al.  Stochastic Generator of Chemical Structure. 3. Reaction Network Generation , 2000, J. Chem. Inf. Comput. Sci..

[103]  G. Marin,et al.  Single-Event Rate Parameters for the Hydrocracking of Cycloalkanes on Pt/US-Y Zeolites , 2001 .

[104]  Gilbert F. Froment,et al.  Kinetic modeling of the thermal cracking of hydrocarbons. 2. Calculation of activation energies , 1988 .

[105]  Pierre-Alexandre Glaude,et al.  Computer Based Generation of Reaction Mechanisms for Gas-phase Oxidation , 2000, Comput. Chem..

[106]  Gilbert F. Froment,et al.  Single-event kinetics of catalytic cracking , 1993 .

[107]  J. Sinfelt,et al.  Role of dehydrogenation activity in the catalytic isomerization and dehydrocyclization of hydrocarbons , 1962 .

[108]  P. Galtier,et al.  From single events theory to molecular kinetics—application to industrial process modelling , 2003 .

[109]  Linda J. Broadbelt,et al.  Construction of a mechanistic model of Fischer–Tropsch synthesis on Ni(1 1 1) and Co(0 0 0 1) surfaces , 1999 .

[110]  Gilbert F. Froment,et al.  Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts , 1985 .

[111]  G. Froment,et al.  Activities and selectivities for reforming reactions on unsulfided and sulfided commercial platinum and platinum-rhenium catalysts , 1985 .

[112]  G. Froment,et al.  Kinetic Modeling of the Methanol to Olefins Process. 1. Model Formulation , 2001 .

[113]  G. Froment,et al.  Catalytic Kinetics: Modelling , 1982 .

[114]  Ioannis P. Androulakis,et al.  Application of Computational Kinetic Mechanism Generation to Model the Autocatalytic Pyrolysis of Methane , 2003 .

[115]  Károly Héberger,et al.  MECHGEN: Computer Aided Generation and Reduction of Reaction Mechanisms , 2002, J. Chem. Inf. Comput. Sci..

[116]  William H. Green,et al.  Rate-Based Construction of Kinetic Models for Complex Systems , 1997 .

[117]  Eliseo Ranzi,et al.  new improvements in modeling kinetic schemes for hydrocarbons pyrolysis reactors , 1992 .

[118]  B. Davis Alkane dehydrocyclization mechanism , 1999 .