The Quantum Schur Transform: I. Efficient Qudit Circuits

We present an efficient family of quantum circuits for a fundamental primitive in quantum information theory, the Schur transform. The Schur transform on n d-dimensional quantum systems is a transform between a standard computational basis to a labelling related to the representation theory of the symmetric and unitary groups. If we desire to implement the Schur transform to an accuracy of epsilon, then our circuit construction uses a number of gates which is polynomial in n, d and log(1/epsilon). The important insights we use to perform this construction are the selection of the appropriate subgroup adapted basis and the Wigner-Eckart theorem. Our efficient circuit construction renders numerous protocols in quantum information theory computationally tractable and is an important new efficient quantum circuit family which goes significantly beyond the standard paradigm of the quantum Fourier transform.

[1]  J. D. Louck,et al.  A pattern calculus for tensor operators in the unitary groups , 1968 .

[2]  J. D. Louck,et al.  Recent Progress Toward a Theory of Tensor Operators in the Unitary Groups , 1970 .

[3]  Howard Georgi,et al.  Lie Algebras in Particle Physics , 1982 .

[4]  Jin-quan Chen Group Representation Theory For Physicists , 1989 .

[5]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[6]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[7]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[8]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[9]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[10]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[11]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Cleve,et al.  Schumacher's quantum data compression as a quantum computation. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[16]  Robert Beals,et al.  Quantum computation of Fourier transforms over symmetric groups , 1997, STOC '97.

[17]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[18]  P. Zanardi,et al.  Error avoiding quantum codes , 1997, quant-ph/9710041.

[19]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[20]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[21]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[22]  P. Pascual,et al.  OPTIMAL MINIMAL MEASUREMENTS OF MIXED STATES , 1999 .

[23]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[24]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[25]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[26]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[27]  D. Bacon Decoherence, Control, and Symmetry in Quantum Computers , 2001 .

[28]  M. Mosca,et al.  Quantum networks for concentrating entanglement , 2001, quant-ph/0101009.

[29]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[30]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[31]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[32]  Masahito Hayashi,et al.  Simple construction of quantum universal variable-length source coding , 2002, IEEE International Symposium on Information Theory, 2003. Proceedings..

[33]  T. Rudolph,et al.  Classical and quantum communication without a shared reference frame. , 2003, Physical review letters.

[34]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[35]  Alexander Russell,et al.  Generic quantum Fourier transforms , 2004, SODA '04.

[36]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[37]  Masahito Hayashi,et al.  Universal distortion-free entanglement concentration , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[38]  Andris Ambainis,et al.  Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.

[39]  I Devetak,et al.  Relating quantum privacy and quantum coherence: an operational approach. , 2004, Physical review letters.

[40]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[41]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[42]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.