Distributional robustness as a guiding principle for causality in cognitive neuroscience

While probabilistic models describe the dependence structure between observed variables, causal models go one step further: they predict how cognitive functions are affected by external interventions that perturb neuronal activity. Inferring causal relationships from data is an ambitious task that is particularly challenging in cognitive neuroscience. Here, we discuss two difficulties in more detail: the scarcity of interventional data and the challenge of finding the right variables. We argue for distributional robustness as a guiding principle to tackle these problems. Modelling a target variable using the correct set of causal variables yields a model that generalises across environments or subjects (if these environments leave the causal mechanisms intact). Conversely, if a candidate model does not generalise, then either it includes non-causes of the target variable or the underlying variables are wrongly defined. In this sense, generalisability may serve as a guiding principle when defining relevant variables and can be used to partially compensate for the lack of interventional data.

[1]  T. Haavelmo,et al.  The probability approach in econometrics , 1944 .

[2]  Jean-Baptiste Poline,et al.  Atlases of cognition with large-scale human brain mapping , 2018, PLoS Comput. Biol..

[3]  Jonas Peters,et al.  Causal inference by using invariant prediction: identification and confidence intervals , 2015, 1501.01332.

[4]  Stefan Haufe,et al.  On the interpretation of weight vectors of linear models in multivariate neuroimaging , 2014, NeuroImage.

[5]  Polina Golland,et al.  Coping with confounds in multivoxel pattern analysis: What should we do about reaction time differences? A comment on Todd, Nystrom & Cohen 2013 , 2014, NeuroImage.

[6]  D. Rubin,et al.  Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction , 2016 .

[7]  Russell A. Poldrack,et al.  The New Mind Readers , 2018 .

[8]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[9]  Richard Scheines,et al.  Learning the Structure of Linear Latent Variable Models , 2006, J. Mach. Learn. Res..

[10]  Rd Angela Madden Cholesterol and beyond: the research of diet and coronary heart disease 1900–2000 , 2011 .

[11]  Russell A. Poldrack,et al.  Six problems for causal inference from fMRI , 2010, NeuroImage.

[12]  Bernhard Schölkopf,et al.  Causal Consistency of Structural Equation Models , 2017, UAI.

[13]  J. Peters,et al.  Identifiability of Gaussian structural equation models with equal error variances , 2012, 1205.2536.

[14]  Bernhard Schölkopf,et al.  Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data , 2016, 2016 International Workshop on Pattern Recognition in Neuroimaging (PRNI).

[15]  Fattaneh Jabbari,et al.  Discovery of Causal Models that Contain Latent Variables Through Bayesian Scoring of Independence Constraints , 2017, ECML/PKDD.

[16]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[17]  Bernhard Schölkopf,et al.  Causal discovery with continuous additive noise models , 2013, J. Mach. Learn. Res..

[18]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[19]  Wei Liao,et al.  Nonlinear connectivity by Granger causality , 2011, NeuroImage.

[20]  Jonathan D. Cohen,et al.  Confounds in multivariate pattern analysis: Theory and rule representation case study , 2013, NeuroImage.

[21]  Stefan Bauer,et al.  Learning stable and predictive structures in kinetic systems , 2018, Proceedings of the National Academy of Sciences.

[22]  Michael I. Jordan Graphical Models , 2003 .

[23]  Daniele Marinazzo,et al.  Kernel-Granger causality and the analysis of dynamical networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[25]  B T Thomas Yeo,et al.  Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks , 2019, Brain Topography.

[26]  Karl J. Friston,et al.  Model selection and gobbledygook: Response to Lohmann et al. , 2013, NeuroImage.

[27]  Daniele Marinazzo,et al.  Advancing functional connectivity research from association to causation , 2019, Nature Neuroscience.

[28]  Arthur Gretton,et al.  MERLiN: Mixture Effect Recovery in Linear Networks , 2015, IEEE Journal of Selected Topics in Signal Processing.

[29]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[30]  Claudia Baier Direction Of Time , 2016 .

[31]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[32]  Michael W. Cole,et al.  From connectome to cognition: The search for mechanism in human functional brain networks , 2017, NeuroImage.

[33]  Aapo Hyvärinen,et al.  On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.

[34]  Tonio Ball,et al.  Causal and anti-causal learning in pattern recognition for neuroimaging , 2015, 2014 International Workshop on Pattern Recognition in Neuroimaging.

[35]  P. Spirtes,et al.  Causation, Prediction, and Search, 2nd Edition , 2001 .

[36]  Peter Buhlmann,et al.  Geometry of the faithfulness assumption in causal inference , 2012, 1207.0547.

[37]  Daniel Steinberg,et al.  The cholesterol wars : the skeptics vs. the preponderance of evidence , 2007 .

[38]  Peter Bühlmann,et al.  CAM: Causal Additive Models, high-dimensional order search and penalized regression , 2013, ArXiv.

[39]  Andreas Ritter,et al.  Structural Equations With Latent Variables , 2016 .

[40]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[41]  A. Antal,et al.  Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms , 2016, Neural plasticity.

[42]  P. Spirtes,et al.  Causal Inference of Ambiguous Manipulations , 2004, Philosophy of Science.

[43]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[44]  Bernhard Schölkopf,et al.  Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise , 2018, J. Mach. Learn. Res..

[45]  J. Peters,et al.  Invariant Causal Prediction for Sequential Data , 2017, Journal of the American Statistical Association.

[46]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[47]  Gabriele Lohmann,et al.  Response to commentaries on our paper: Critical comments on dynamic causal modelling , 2013, NeuroImage.

[48]  Jürgen Jost,et al.  Response to commentaries on our paper gene and genon concept: coding versus regulation , 2009, Theory in Biosciences.

[49]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[50]  Bernhard Schölkopf,et al.  Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .

[51]  C. Herrmann,et al.  Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes , 2013, Front. Hum. Neurosci..

[52]  A. Filler The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI , 2009 .

[53]  C. Herrmann,et al.  Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations , 2018, Front. Hum. Neurosci..

[54]  Dominik Janzing,et al.  Structural causal models for macro-variables in time-series , 2018, 1804.03911.

[55]  Susanne M. Schennach,et al.  Recent Advances in the Measurement Error Literature , 2016 .

[56]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[57]  Konrad Paul Kording,et al.  The lure of causal statements: Rampant mis-inference of causality in estimated connectivity , 2018, 1812.03363.

[58]  Erik P. Hoel When the Map Is Better Than the Territory , 2016, Entropy.

[59]  Joseph Ramsey,et al.  Bayesian networks for fMRI: A primer , 2014, NeuroImage.

[60]  Tonio Ball,et al.  Causal interpretation rules for encoding and decoding models in neuroimaging , 2015, NeuroImage.

[61]  Jack L. Gallant,et al.  Decoding the Semantic Content of Natural Movies from Human Brain Activity , 2016, Frontiers in systems neuroscience.

[62]  B. Cheeran,et al.  Inter-individual Variability in Response to Non-invasive Brain Stimulation Paradigms , 2014, Brain Stimulation.

[63]  Bernhard Schölkopf,et al.  Causal Inference on Time Series using Structural Equation Models , 2012, ArXiv.

[64]  N. Meinshausen,et al.  Anchor regression: Heterogeneous data meet causality , 2018, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[65]  Rajen Dinesh Shah,et al.  The hardness of conditional independence testing and the generalised covariance measure , 2018, The Annals of Statistics.

[66]  Stephen M. Smith,et al.  The future of FMRI connectivity , 2012, NeuroImage.

[67]  Bernhard Schölkopf,et al.  On causal and anticausal learning , 2012, ICML.

[68]  Daniele Marinazzo,et al.  Synergy and redundancy in the Granger causal analysis of dynamical networks , 2014, New Journal of Physics.

[69]  S. Herculano‐Houzel The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost , 2012, Proceedings of the National Academy of Sciences.

[70]  Erik P. Hoel,et al.  Quantifying causal emergence shows that macro can beat micro , 2013, Proceedings of the National Academy of Sciences.

[71]  Bernhard Schölkopf,et al.  Selecting causal brain features with a single conditional independence test per feature , 2019, NeurIPS.

[72]  Gabriele Lohmann,et al.  Critical comments on dynamic causal modelling , 2012, NeuroImage.

[73]  Sergey M. Plis,et al.  Causal Discovery from Subsampled Time Series Data by Constraint Optimization , 2016, Probabilistic Graphical Models.

[74]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[75]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[76]  Lourens J. Waldorp,et al.  Effective connectivity of fMRI data using ancestral graph theory: Dealing with missing regions , 2011, NeuroImage.

[77]  Ruben Sanchez-Romero,et al.  Combining multiple functional connectivity methods to improve causal inferences , 2019, bioRxiv.

[78]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[79]  Karl J. Friston,et al.  Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.