Evaluation of methods to extract parameters from current–voltage characteristics of solar cells

[1]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[2]  F. A. Shirland The history, design, fabrication and performance of CdS thin film solar cells , 1966 .

[3]  L. Fraas,et al.  Tandem gallium solar cell voltage-matched circuit performance projections , 1991 .

[4]  Improved fill-factor for the double-sided buried-contact bifacial silicon solar cell , 1998 .

[5]  M. Chegaar,et al.  A simpler method for extracting solar cell parameters using the conductance method , 1999 .

[6]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[7]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[8]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[9]  A. Kapoor,et al.  A new method to determine the diode ideality factor of real solar cell using Lambert W-function , 2005 .

[10]  A. Kapoor,et al.  A new approach to study organic solar cell using Lambert W-function , 2005 .

[11]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[12]  Nathan S. Lewis,et al.  Solar energy conversion. , 2007 .

[13]  M. Chegaar,et al.  Solar cells parameters evaluation considering the series and shunt resistance , 2007 .

[14]  Stephen R. Forrest,et al.  Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells , 2007 .

[15]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[16]  Determination of organic solar cell parameters based on single or multiple pin structures , 2009 .

[17]  D. Carroll,et al.  Origins of performance in fiber-based organic photovoltaics , 2009 .

[18]  Teodor K. Todorov,et al.  Photovoltaic Devices: High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber (Adv. Mater. 20/2010) , 2010 .

[19]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[20]  D. Carroll,et al.  Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices , 2011 .

[21]  Gregor Schwartz,et al.  Efficient Organic Tandem Solar Cells based on Small Molecules , 2011 .

[22]  Frank Dimroth,et al.  Subcell I-V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements , 2011 .

[23]  D. Carroll,et al.  A soluble high molecular weight copolymer of benzo[1,2-b:4,5-b']dithiophene and benzoxadiazole for efficient organic photovoltaics. , 2011, Macromolecular rapid communications.

[24]  Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics , 2011 .

[25]  Multi-layer deposition of conformal, transparent, conducting oxide films for device applications , 2012 .

[26]  D. Carroll,et al.  Spectral response of fiber-based organic photovoltaics , 2012 .