Multithreading decoupled architectures for complexity-effective general purpose computing

Decoupled architectures have not traditionally been used in the context of general purpose computing because of their inability to tolerate control-intensive code that exists across a wide range of applications. This work investigates the possibility of using multithreading to overcome the loss of decoupling dependencies that represent the cause of this main limitation in decoupled architectures. A proposal for a multithreaded decoupled control/access/execute architecture is presented as a platform for achieving high performance on general purpose workloads. It is argued that such a decoupled architecture is more complexity-effective and scalable than comparable superscalar processors, which incorporate enormous amounts of complexity for modest performance gains.

[1]  James E. Smith,et al.  Complexity-Effective Superscalar Processors , 1997, ISCA.

[2]  Stamatis Vassiliadis,et al.  On the design complexity of the issue logic of superscalar machines , 1998, Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204).

[3]  E SmithJames Dynamic Instruction Scheduling and the Astronautics ZS-1 , 1989 .

[4]  Alasdair Rawsthorne,et al.  Compiling and optimizing for decoupled architectures , 1995 .

[5]  Nigel P. Topham,et al.  Performance of the decoupled ACRI-1 architecture: the perfect club , 1995, HPCN Europe.

[6]  Andrew R. Pleszkun,et al.  PIPE: a VLSI decoupled architecture , 1985, ISCA '85.

[7]  Gary S. Tyson,et al.  MISC: a Multiple Instruction Stream Computer , 1992, MICRO 1992.

[8]  Antonio González,et al.  The synergy of multithreading and access/execute decoupling , 1999, Proceedings Fifth International Symposium on High-Performance Computer Architecture.

[9]  Richard E. Kessler,et al.  The Alpha 21264 microprocessor , 1999, IEEE Micro.

[10]  Vojin G. Oklobdzija,et al.  Multithreaded Decoupled Architecture , 1995, Int. J. High Speed Comput..

[11]  Vikas Agarwal,et al.  Clock rate versus IPC: the end of the road for conventional microarchitectures , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

[12]  Pius Ng,et al.  A comparision of superscalar and decoupled access/execute architectures , 1993, MICRO 1993.

[13]  Antonio González,et al.  Speculative multithreaded processors , 1998, ICS '98.

[14]  Vivek Sarkar,et al.  Baring It All to Software: Raw Machines , 1997, Computer.

[15]  Theo Ungerer,et al.  Context-switching techniques for decoupled multithreaded processors , 1999, Proceedings 25th EUROMICRO Conference. Informatics: Theory and Practice for the New Millennium.

[16]  Alasdair Rawsthorne,et al.  Compiling and Optimizing for Decoupled Architectures , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[17]  Alasdair Rawsthorne,et al.  The effectiveness of decoupling , 1993, ICS '93.

[18]  Joan-Manuel Parcerisa,et al.  Multithreaded Decoupled Access/Execute Processors , 1997 .

[19]  Wm. A. Wulf Evaluation of the WM architecture , 1992, ISCA '92.

[20]  J.E. Smith,et al.  The Astronautics ZS-1 processor , 1988, Proceedings 1988 IEEE International Conference on Computer Design: VLSI.

[21]  Josep Llosa,et al.  The Performance of Decoupled Architectures1 , 1996 .

[22]  Andrew R. Pleszkun,et al.  PIPE: a VLSI decoupled architecture , 1985, ISCA '85.

[23]  Josep Llosa,et al.  Performance Diagnostics of the ACRI-1 , 1996 .

[24]  Nigel P. Topham,et al.  A comparison of data prefetching on an access decoupled and superscalar machine , 1997, Proceedings of 30th Annual International Symposium on Microarchitecture.