Langevin equation with two fractional orders

Abstract A new type of fractional Langevin equation of two different orders is introduced. The solutions for this equation, known as the fractional Ornstein–Uhlenbeck processes, based on Weyl and Riemann–Liouville fractional derivatives are obtained. The basic properties of these processes are studied. An example of the spectral density of ocean wind speed which has similar spectral density as that of Weyl fractional Ornstein–Uhlenbeck process is given.

[1]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[2]  S. C. Lim,et al.  Self-similar Gaussian processes for modeling anomalous diffusion. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Jacques Istas,et al.  Local self-similarity and the Hausdorff dimension , 2003 .

[4]  S. Samko Hypersingular Integrals and Their Applications , 2001 .

[5]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[6]  D. Wilson,et al.  Quasi-Wavelet Model of Von Kármán Spectrum of Turbulent Velocity Fluctuations , 2004 .

[7]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[8]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[9]  I. Podlubny Fractional differential equations , 1998 .

[10]  Bruce J. West,et al.  Fractional Langevin model of memory in financial markets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[12]  R. Mazo,et al.  Brownian Motion: Fluctuations, Dynamics, and Applications , 2002 .

[13]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[14]  Ming Li,et al.  LOCALLY SELF-SIMILAR FRACTIONAL OSCILLATOR PROCESSES , 2007 .

[15]  John Waldron,et al.  The Langevin Equation , 2004 .

[16]  S. C. Lim,et al.  Stochastic quantization of nonlocal fields , 2004 .

[17]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[18]  M. Tokuyama,et al.  Nonequilibrium statistical description of anomalous diffusion , 1999 .

[19]  Subrata Kumar Chakrabarti,et al.  Offshore Structure Modeling , 1994 .

[20]  N. Leonenko,et al.  Limit Theorems for Random Fields with Singular Spectrum , 1999 .

[21]  James T. Hynes,et al.  The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models , 1980 .

[22]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[23]  N. Wax,et al.  Selected Papers on Noise and Stochastic Processes , 1955 .

[24]  K. S. Fa Fractional Langevin equation and Riemann-Liouville fractional derivative. , 2007 .

[25]  Wang Long-time-correlation effects and biased anomalous diffusion. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[27]  V. Kobelev,et al.  Fractional Langevin Equation to Describe Anomalous Diffusion , 2000 .

[28]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[29]  Mingzhou Ding,et al.  Processes with long-range correlations : theory and applications , 2003 .

[30]  D. N. Asimakopoulos,et al.  Turbulence measurements on top of a steep hill , 1992 .

[31]  Riemann–Liouville and Weyl fractional oscillator processes , 2006 .

[32]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[33]  E. Lutz Fractional Langevin equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  S. C. Lim,et al.  ASYMPTOTIC PROPERTIES OF THE FRACTIONAL BROWNIAN MOTION OF RIEMANN-LIOUVILLE TYPE , 1995 .

[35]  Kwok Sau Fa,et al.  Generalized Langevin equation with fractional derivative and long-time correlation function. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Wang,et al.  Generalized Langevin equations: Anomalous diffusion and probability distributions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  T. Kármán Progress in the Statistical Theory of Turbulence , 1948 .

[38]  C. Heyde On a class of random field models which allows long range dependence , 1990 .