The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range $0.8 < z < 2.2$
暂无分享,去创建一个
Adam D. Myers | Ashley J. Ross | Cheng Zhao | Katrin Heitmann | Gong-Bo Zhao | Joel R. Brownstein | Chia-Hsun Chuang | Kyle S. Dawson | Isabelle Paris | Sarah Eftekharzadeh | Graziano Rossi | Donald P. Schneider | Salman Habib | Jiamin Hou | Will J. Percival | Julian Bautista | Etienne Burtin | H'ector Gil-Mar'in | Pauline Zarrouk | A. Myers | D. Schneider | W. Percival | J. Bautista | J. Brownstein | E. Burtin | Chia-Hsun Chuang | K. Dawson | I. Pâris | A. Ross | G. Rossi | Ariel G. S'anchez | J. Tinker | Gong-Bo Zhao | J. Guy | Yuting Wang | Cheng Zhao | S. Eftekharzadeh | S. Habib | K. Heitmann | Falk Baumgarten | H. Gil-Mar'in | Rossana Ruggeri | P. Zarrouk | Jiamin Hou | Yuting Wang | Falk Baumgarten | Julien Guy | Rossana Ruggeri | Jeremy L. Tinker | Rita Tojerio | Violeta Gonz'alez-P'erez | Rita Tojerio | Violeta Gonz'alez-P'erez | C. Chuang | R. Ruggeri | D. Schneider | G. Zhao | É. Burtin | D. Schneider | S. Habib | D. Schneider
[1] A. Myers,et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights , 2018, 1801.03077.
[2] J. Peacock,et al. Rapid modelling of the redshift-space power spectrum multipoles for a masked density field , 2015, 1511.07799.
[3] W. Percival,et al. The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15 , 2014, 1409.3238.
[4] J. Peacock,et al. Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.
[5] W. Percival,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies , 2015, 1509.06386.
[6] T. Grav,et al. PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.
[7] Naoyuki Tamura,et al. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ∼ 1.4 , 2015, 1511.08083.
[8] A. Myers,et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2 , 2018, Monthly Notices of the Royal Astronomical Society.
[9] M. Crocce,et al. Accurate estimators of correlation functions in Fourier space , 2015, 1512.07295.
[10] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[11] W. M. Wood-Vasey,et al. THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.
[12] David R. Silva,et al. The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.
[13] Max Tegmark. Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.
[14] Walter A. Siegmund,et al. The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.
[15] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[16] Kwan Chuen Chan,et al. Halo sampling, local bias, and loop corrections , 2012, 1204.5770.
[17] M. A. Strauss,et al. SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.
[18] Adam D. Myers,et al. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.
[19] Roman Scoccimarro. Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .
[20] Qi Guo,et al. Smoothing the redshift distributions of random samples for the baryon acoustic oscillations: applications to the SDSS-III BOSS DR12 and QPM mock samples , 2017, 1701.02427.
[21] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[22] Donald P. Schneider,et al. The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity , 2014, 1407.5668.
[23] David Schlegel,et al. SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.
[24] Aniruddha R. Thakar,et al. ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .
[25] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release , 2017, 1712.05029.
[26] R. Ellis,et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.
[27] A. Myers,et al. Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination , 2017, 1705.04718.
[28] Keivan G. Stassun,et al. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.
[29] J. Tinker,et al. The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipole , 2016, 1609.01714.
[30] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[31] D. A. García-Hernández,et al. University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .
[32] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.
[33] S. Saito,et al. Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.
[34] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[35] Eric V. Linder,et al. Cosmic growth history and expansion history , 2005 .
[36] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[37] Michael J. Sholl,et al. The DESI Experiment Part II: Instrument Design , 2016, 1611.00037.
[38] W. Percival,et al. The information content of anisotropic Baryon Acoustic Oscillation scale measurements , 2015, 1501.05571.
[39] S. Roweis,et al. An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.
[40] Bernard F. Schutz,et al. Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .
[41] S. White,et al. The mass–concentration–redshift relation of cold dark matter haloes , 2013, 1312.0945.
[42] Hal Finkel,et al. HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Architectures , 2014, 1410.2805.
[43] Fermilab,et al. On the distribution of haloes, galaxies and mass , 2001, astro-ph/0105008.
[44] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[45] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[46] D. Schneider,et al. Measurement of BAO correlations at $z=2.3$ with SDSS DR12 \lya-Forests , 2017, 1702.00176.
[47] Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters , 2011, 1104.1635.
[48] B. Garilli,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The matter density and baryon fraction from the galaxy power spectrum at redshift $0.6 , 2016, 1611.07044.
[49] A. Myers,et al. The Extended Baryon Oscillation Spectroscopic Survey: Variability Selection and Quasar Luminosity Function , 2015, 1509.05607.
[50] P. Fosalba,et al. nIFTy cosmology: galaxy/halo mock catalogue comparison project on clustering statistics , 2014, 1412.7729.
[51] R. Nichol,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.
[52] et al,et al. The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.
[53] Martin White,et al. Mock galaxy catalogues using the quick particle mesh method , 2013, 1309.5532.
[54] R. Scoccimarro,et al. Fast estimators for redshift-space clustering , 2015, 1506.02729.
[55] W. Percival,et al. The extended Baryon Oscillation Spectroscopic Survey: testing a new approach to measure the evolution of the structure growth , 2017, Monthly Notices of the Royal Astronomical Society.
[56] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[57] Bradley M. Peterson,et al. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.
[58] Adam A. Miller,et al. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION , 2015, 1508.04472.
[59] Ashley J. Ross,et al. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample , 2017, The Astrophysical Journal.
[60] B. Paczyński,et al. An evolution free test for non-zero cosmological constant , 1979, Nature.
[61] Scott Croom,et al. The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.
[62] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[63] Walter A. Siegmund,et al. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.
[64] B. Garilli,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): An unbiased estimate of the growth rate of structure at $\mathbf{\left =0.85}$ using the clustering of luminous blue galaxies , 2017, 1708.00026.
[65] S. White,et al. An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.
[66] W. Percival,et al. Optimal redshift weighting for redshift-space distortions , 2016, 1602.05195.
[67] Adam D. Myers,et al. The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast , 2015, 1510.08216.
[68] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[69] D. Schneider,et al. Baryon acoustic oscillations from the complete SDSS-III Ly$\alpha$-quasar cross-correlation function at $z=2.4$ , 2017, 1708.02225.
[70] N. Padmanabhan,et al. Optimal redshift weighting for baryon acoustic oscillations , 2014, 1411.1424.
[71] A. Myers,et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.
[72] Ashley J. Ross,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.
[73] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[74] P. Mcdonald,et al. Understanding Higher-Order Nonlocal Halo Bias at Large Scales by Combining the Power Spectrum with the Bispectrum , 2014, 1405.1447.
[75] Aniruddha R. Thakar,et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.
[76] W. M. Wood-Vasey,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.
[77] Hiroaki Nishioka,et al. A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2006 .
[78] M. White,et al. EMBEDDING REALISTIC SURVEYS IN SIMULATIONS THROUGH VOLUME REMAPPING , 2010, 1003.3178.
[79] Ashley J. Ross,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.
[80] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[81] W. Percival,et al. Unbiased clustering estimation in the presence of missing observations , 2017, 1703.02070.
[82] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.
[83] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[84] Adam D. Myers,et al. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL , 2011, 1105.3975.
[85] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[86] M. Fukugita,et al. The Sloan Digital Sky Survey Photometric System , 1996 .
[87] Mamoru Doi,et al. PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.
[88] W. M. Wood-Vasey,et al. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.
[89] E. Burtin,et al. Clustering of quasars in the first year of the SDSS-IV eBOSS survey : Interpretation and halo occupation distribution , 2016, 1612.06918.
[90] P. Mcdonald,et al. Evidence for quadratic tidal tensor bias from the halo bispectrum , 2012, 1201.4827.
[91] R W Hockney,et al. Computer Simulation Using Particles , 1966 .
[92] Davide Bianchi,et al. Measuring line-of-sight-dependent Fourier-space clustering using FFTs , 2015, 1505.05341.
[93] S. White,et al. The Structure of cold dark matter halos , 1995, astro-ph/9508025.
[94] Perturbation theory approach for the power spectrum: from dark matter in real space to massive haloes in redshift space , 2012, 1209.3771.
[95] Roberto Scaramella,et al. Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.
[96] Ashley J. Ross,et al. The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.
[97] Patrick McDonald,et al. Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.