The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range $0.8 < z < 2.2$

Author(s): Gil-Marin, H; Guy, J; Zarrouk, P; Burtin, E; Chuang, CH; Percival, WJ; Ross, AJ; Ruggeri, R; Tojerio, R; Zhao, GB; Wang, Y; Bautista, J; Hou, J; Sanchez, AG; Pâris, I; Baumgarten, F; Brownstein, JR; Dawson, KS; Eftekharzadeh, S; Gonzalez-Perez, V; Habib, S; Heitmann, K; Myers, AD; Rossi, G; Schneider, DP; Seo, HJ; Tinker, JL; Zhao, C | Abstract: © 2017 The Authors. We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample (DR14Q).We measure the redshift space distortions using the power-spectrum monopole, quadrupole, and hexadecapole inferred from 148 659 quasars between redshifts 0.8 and 2.2, covering a total sky footprint of 2112.9 deg2. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, fσ8, and the Alcock-Paczynski dilation scales that allow constraints to be placed on the angular diameter distance DA(z) and the Hubble H(z) parameter. At the effective redshift of zeff = 1.52, fσ8(zeff) = 0.420 ± 0.076, H(zeff) = [162 ± 12] (r sfid/rs) kms-1 Mpc-1, and DA(zeff) = [1.85 ± 0.11] × 103 (rs/r sfid) Mpc, where rs is the comoving sound horizon at the baryon drag epoch and the superscript 'fid' stands for its fiducial value. The errors take into account the full error budget, including systematics and statistical contributions. These results are in full agreement with the current Λ-Cold Dark Matter cosmological model inferred from Planck measurements. Finally, we compare our measurements with other eBOSS companion papers and find excellent agreement, demonstrating the consistency and complementarity of the different methods used for analysing the data.

[1]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights , 2018, 1801.03077.

[2]  J. Peacock,et al.  Rapid modelling of the redshift-space power spectrum multipoles for a masked density field , 2015, 1511.07799.

[3]  W. Percival,et al.  The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15 , 2014, 1409.3238.

[4]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[5]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies , 2015, 1509.06386.

[6]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[7]  Naoyuki Tamura,et al.  The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ∼ 1.4 , 2015, 1511.08083.

[8]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2 , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  M. Crocce,et al.  Accurate estimators of correlation functions in Fourier space , 2015, 1512.07295.

[10]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[11]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[12]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[13]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[14]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[15]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[16]  Kwan Chuen Chan,et al.  Halo sampling, local bias, and loop corrections , 2012, 1204.5770.

[17]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[18]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[19]  Roman Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .

[20]  Qi Guo,et al.  Smoothing the redshift distributions of random samples for the baryon acoustic oscillations: applications to the SDSS-III BOSS DR12 and QPM mock samples , 2017, 1701.02427.

[21]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[22]  Donald P. Schneider,et al.  The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity , 2014, 1407.5668.

[23]  David Schlegel,et al.  SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.

[24]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[25]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release , 2017, 1712.05029.

[26]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[27]  A. Myers,et al.  Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination , 2017, 1705.04718.

[28]  Keivan G. Stassun,et al.  The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.

[29]  J. Tinker,et al.  The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipole , 2016, 1609.01714.

[30]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[31]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[32]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.

[33]  S. Saito,et al.  Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.

[34]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[35]  Eric V. Linder,et al.  Cosmic growth history and expansion history , 2005 .

[36]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[37]  Michael J. Sholl,et al.  The DESI Experiment Part II: Instrument Design , 2016, 1611.00037.

[38]  W. Percival,et al.  The information content of anisotropic Baryon Acoustic Oscillation scale measurements , 2015, 1501.05571.

[39]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[40]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[41]  S. White,et al.  The mass–concentration–redshift relation of cold dark matter haloes , 2013, 1312.0945.

[42]  Hal Finkel,et al.  HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Architectures , 2014, 1410.2805.

[43]  Fermilab,et al.  On the distribution of haloes, galaxies and mass , 2001, astro-ph/0105008.

[44]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[45]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[46]  D. Schneider,et al.  Measurement of BAO correlations at $z=2.3$ with SDSS DR12 \lya-Forests , 2017, 1702.00176.

[47]  Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters , 2011, 1104.1635.

[48]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). The matter density and baryon fraction from the galaxy power spectrum at redshift $0.6 , 2016, 1611.07044.

[49]  A. Myers,et al.  The Extended Baryon Oscillation Spectroscopic Survey: Variability Selection and Quasar Luminosity Function , 2015, 1509.05607.

[50]  P. Fosalba,et al.  nIFTy cosmology: galaxy/halo mock catalogue comparison project on clustering statistics , 2014, 1412.7729.

[51]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[52]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[53]  Martin White,et al.  Mock galaxy catalogues using the quick particle mesh method , 2013, 1309.5532.

[54]  R. Scoccimarro,et al.  Fast estimators for redshift-space clustering , 2015, 1506.02729.

[55]  W. Percival,et al.  The extended Baryon Oscillation Spectroscopic Survey: testing a new approach to measure the evolution of the structure growth , 2017, Monthly Notices of the Royal Astronomical Society.

[56]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[57]  Bradley M. Peterson,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.

[58]  Adam A. Miller,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION , 2015, 1508.04472.

[59]  Ashley J. Ross,et al.  The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample , 2017, The Astrophysical Journal.

[60]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[61]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[62]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[63]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[64]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): An unbiased estimate of the growth rate of structure at $\mathbf{\left =0.85}$ using the clustering of luminous blue galaxies , 2017, 1708.00026.

[65]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[66]  W. Percival,et al.  Optimal redshift weighting for redshift-space distortions , 2016, 1602.05195.

[67]  Adam D. Myers,et al.  The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast , 2015, 1510.08216.

[68]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[69]  D. Schneider,et al.  Baryon acoustic oscillations from the complete SDSS-III Ly$\alpha$-quasar cross-correlation function at $z=2.4$ , 2017, 1708.02225.

[70]  N. Padmanabhan,et al.  Optimal redshift weighting for baryon acoustic oscillations , 2014, 1411.1424.

[71]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.

[72]  Ashley J. Ross,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.

[73]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[74]  P. Mcdonald,et al.  Understanding Higher-Order Nonlocal Halo Bias at Large Scales by Combining the Power Spectrum with the Bispectrum , 2014, 1405.1447.

[75]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[76]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[77]  Hiroaki Nishioka,et al.  A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2006 .

[78]  M. White,et al.  EMBEDDING REALISTIC SURVEYS IN SIMULATIONS THROUGH VOLUME REMAPPING , 2010, 1003.3178.

[79]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.

[80]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[81]  W. Percival,et al.  Unbiased clustering estimation in the presence of missing observations , 2017, 1703.02070.

[82]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[83]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[84]  Adam D. Myers,et al.  PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL , 2011, 1105.3975.

[85]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[86]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[87]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[88]  W. M. Wood-Vasey,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.

[89]  E. Burtin,et al.  Clustering of quasars in the first year of the SDSS-IV eBOSS survey : Interpretation and halo occupation distribution , 2016, 1612.06918.

[90]  P. Mcdonald,et al.  Evidence for quadratic tidal tensor bias from the halo bispectrum , 2012, 1201.4827.

[91]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[92]  Davide Bianchi,et al.  Measuring line-of-sight-dependent Fourier-space clustering using FFTs , 2015, 1505.05341.

[93]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[94]  Perturbation theory approach for the power spectrum: from dark matter in real space to massive haloes in redshift space , 2012, 1209.3771.

[95]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[96]  Ashley J. Ross,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.

[97]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.