Parametric weighting functions

This paper provides preference foundations for parametric weighting functions under rank-dependent utility. This is achieved by decomposing the independence axiom of expected utility into separate meaningful properties. These conditions allow us to characterize rank-dependent utility with power and exponential weighting functions. Moreover, by allowing probabilistic risk attitudes to vary within the probability interval, a preference foundation for rank-dependent utility with parametric inverse-S shaped weighting function is obtained.

[1]  D. Prelec The Probability Weighting Function , 1998 .

[2]  A. Röell Risk Aversion in Quiggin and Yaari's Rank-Order Model of Choice under Uncertainty , 1987 .

[3]  Larry G. Epstein,et al.  MIXTURE SYMMETRY AND QUADRATIC UTILITY , 1991 .

[4]  A. Tversky,et al.  Weighing Risk and Uncertainty , 1995 .

[5]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[6]  P. Wakker Testing and Characterizing Properties of Nonadditive Measures through Violations of the Sure-Thing Principle , 2001 .

[7]  Uday S. Karmarkar,et al.  Subjectively weighted utility: A descriptive extension of the expected utility model , 1978 .

[8]  J. Milnor,et al.  AN AXIOMATIC APPROACH TO MEASURABLE UTILITY , 1953 .

[9]  R. Luce,et al.  Independence Properties Vis-À-Vis Several Utility Representations , 2004 .

[10]  A. Chateauneuf Comonotonicity axioms and rank-dependent expected utility theory for arbitrary consequences , 1999 .

[11]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIES Risk, Ambiguity, and the Separation of Utility and Beliefs † , 2001 .

[12]  George Wu An empirical test of ordinal independence , 1994 .

[13]  C. S. Hong,et al.  Empirical Tests of Weighted Utility Theory , 1986 .

[14]  H. Zank Deriving Rank-Dependent Utility Through Probabilistic Consistency by , 2005 .

[15]  R. Luce Utility of Gains and Losses: Measurement-Theoretical and Experimental Approaches , 2000 .

[16]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[17]  John A. Weymark,et al.  GENERALIZED GIN 1 INEQUALITY INDICES , 2001 .

[18]  Uday S. Karmarkar,et al.  Subjectively weighted utility and the Allais Paradox , 1979 .

[19]  G. Shafer,et al.  Expected Utility Hypotheses and the Allais Paradox. , 1982 .

[20]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[21]  Bruno Jullien,et al.  Ordinal independence in nonlinear utility theory , 1988 .

[22]  M. Abdellaoui Parameter-Free Elicitation of Utility and Probability Weighting Functions , 2000 .

[23]  M. Birnbaum Causes of Allais common consequence paradoxes: An experimental dissection ☆ , 2004 .

[24]  P. Wakker,et al.  A simple preference foundation of cumulative prospect theory with power utility , 2002 .

[25]  R. Luce,et al.  Reduction Invariance and Prelec's Weighting Functions. , 2001, Journal of mathematical psychology.

[26]  Ulrich Schmidt,et al.  What is Loss Aversion? , 2005 .

[27]  I. Erev,et al.  Comonotonic independence: The critical test between classical and rank-dependent utility theories , 1994 .

[28]  Louis Narens,et al.  A theory of ratio magnitude estimation , 1996 .

[29]  Alan D. J. Cooke,et al.  Is choice the correct primitive? On using certainty equivalents and reference levels to predict choices among gambles , 1993 .

[30]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[31]  János Aczél,et al.  A behavioral condition for Prelec's weighting function on the positive line without assuming W(1)=1 , 2007 .

[32]  A. Witte,et al.  The Influence of Probability on Risky Choice: A Parametric Examination , 1992 .

[33]  Richard Gonzalez,et al.  On the Shape of the Probability Weighting Function , 1999, Cognitive Psychology.

[34]  Yutaka Nakamura,et al.  Rank dependent utility for arbitrary consequence spaces , 1995 .

[35]  P. Fishburn,et al.  Rank- and sign-dependent linear utility models for finite first-order gambles , 1991 .

[36]  John Quiggin,et al.  Time and risk , 1995 .

[37]  H. Stott Cumulative prospect theory's functional menagerie , 2006 .

[38]  C. S. Hong,et al.  Risk aversion in the theory of expected utility with rank dependent probabilities , 1987 .

[39]  Nathalie Etchart-Vincent Is Probability Weighting Sensitive to the Magnitude of Consequences? An Experimental Investigation on Losses , 2004 .

[40]  J. Hey,et al.  INVESTIGATING GENERALIZATIONS OF EXPECTED UTILITY THEORY USING EXPERIMENTAL DATA , 1994, Experiments in Economics.

[41]  John Quiggin,et al.  Risk Perception And The Analysis Of Risk Attitudes , 1981 .

[42]  S. Karlin,et al.  Mathematical Methods in the Social Sciences , 1962 .

[43]  Mei Wang,et al.  Cumulative prospect theory and the St. Petersburg paradox , 2006 .

[44]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[45]  Rakesh K. Sarin,et al.  Prospect Versus Utility , 1989 .

[46]  Alain Chateauneuf,et al.  Risk seeking with diminishing marginal utility in a non-expected utility model , 1994 .

[47]  Martin Weber,et al.  What Determines the Shape of the Probability Weighting Function Under Uncertainty? , 1998, Manag. Sci..

[48]  G. Debreu Topological Methods in Cardinal Utility Theory , 1959 .

[49]  Zvi Safra,et al.  Constant Risk Aversion , 1998 .

[50]  Eddie Dekel An axiomatic characterization of preferences under uncertainty: Weakening the independence axiom , 1986 .

[51]  Richard Gonzalez,et al.  Curvature of the Probability Weighting Function , 1996 .

[52]  P. Fishburn Transitive measurable utility , 1983 .

[53]  K. MacCrimmon,et al.  Utility Theory: Axioms Versus ‘Paradoxes’ , 1979 .

[54]  Mohammed Abdellaoui,et al.  Choice-Based Elicitation and Decomposition of Decision Weights for Gains and Losses Under Uncertainty , 2003, Manag. Sci..

[55]  John Quiggin,et al.  Increasing Risk: Another Definition , 1991 .

[56]  M. Abdellaoui A Genuine Rank-Dependent Generalization of the Von Neumann-Morgenstern Expected Utility Theorem , 2002 .

[57]  Larry G. Epstein,et al.  First order risk aversion and the equity premium puzzle , 1990 .

[58]  A. Chateauneuf,et al.  From local to global additive representation , 1993 .

[59]  J. Quiggin A theory of anticipated utility , 1982 .

[60]  M. Machina Dynamic Consistency and Non-expected Utility Models of Choice under Uncertainty , 1989 .

[61]  Horst Zank,et al.  Cumulative Prospect Theory for Parametric and Multiattribute Utilities , 2001, Math. Oper. Res..

[62]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[63]  H. Zank,et al.  Deriving Rank-Dependent Expected Utility Through Probabilistic Consistency , 2004 .

[64]  David E. Bell,et al.  Disappointment in Decision Making Under Uncertainty , 1985, Oper. Res..

[65]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[66]  H. J. Einhorn,et al.  Expression theory and the preference reversal phenomena. , 1987 .

[67]  P. Wakker Separating marginal utility and probabilistic risk aversion , 1994 .

[68]  Isaac Meilijson,et al.  Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model , 2004 .

[69]  P. Wakker Additive representations on rank-ordered sets: II. The topological approach , 1993 .

[70]  M. Machina "Expected Utility" Analysis without the Independence Axiom , 1982 .

[71]  P. Wakker Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .

[72]  Colin Camerer,et al.  Violations of the betweenness axiom and nonlinearity in probability , 1994 .

[73]  Chris D. Orme,et al.  Investigating Generalisations of Expected Utility Theory Using Experimental Data , 1994 .

[74]  A. Tversky,et al.  Risk Attitudes and Decision Weights , 1995 .

[75]  Ali al-Nowaihi,et al.  A Simple Derivation of Prelec's Probability Weighting Function , 2006 .

[76]  J. L. Pinto,et al.  A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis , 2000 .

[77]  A. Björner Topological methods , 1996 .

[78]  M. Birnbaum,et al.  Testing Descriptive Utility Theories: Violations of Stochastic Dominance and Cumulative Independence , 1998 .