Conceptually driven and visually rich tasks in texts and teaching practice: the case of infinite series
暂无分享,去创建一个
[1] Aline Robert,et al. L'acquisition de la notion de convergence des suites numériques dans l'enseignement supérieur. , 1982 .
[2] Myriam Codes Valcarce,et al. Actividad rectángulos: un ejemplo de aplicación de metodologías activas en el aula universitaria de matemáticas , 2007 .
[3] Masataka Koyama,et al. Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (PME) (24th, Hiroshima, Japan, July 23-27, 2000), Volume 4. , 2000 .
[4] Elena Nardi,et al. The concept of series in the textbooks: A meaningful introduction? , 2009 .
[5] A. Sfard. On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin , 1991 .
[6] Irene Biza,et al. Introducing the concept of infinite sum: Preliminary analyses of curriculum content , 2008 .
[7] L. Shulman. Those Who Understand: Knowledge Growth in Teaching , 1986 .
[8] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[9] G. Bagni. Infinite series from history to mathematics education , 2009 .
[10] Rod Haggarty,et al. Fundamentals of mathematical analysis , 1990 .
[11] Luis Rico Romero,et al. Intuition in Science and Mathematics: an educational approach , 1988 .
[12] François Laudenbach. Calcul différentiel et intégral , 2000 .
[13] Dennis G. Zill,et al. Advanced Engineering Mathematics , 2021, Technometrics.
[15] David Tall,et al. Ambiguity and flexibility: A proceptual view of simple arithmetic , 1983 .
[16] Amanda Louise Palenberg. Analyse , 1995, Die feinen Unterschiede der Männlichkeiten.
[17] David Tall,et al. Concept image and concept definition in mathematics with particular reference to limits and continuity , 1981 .
[18] MATHEMATICS EDUCATION AND HISTORICAL REFERENCES: GUIDO GRANDI'S INFINITE SERIES , 2005 .
[19] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[20] Raymond Duval,et al. Sémiosis et pensée humaine : registres sémiotiques et apprentissages intellectuels , 1995 .
[21] Temple H. Fay,et al. Infinite Series and Improper Integrals: A Dual Approach. , 1985 .
[22] I. Elia,et al. THE FUNCTIONS OF PICTURES IN PROBLEM SOLVING , 2004 .
[23] Paola Iannone,et al. On convergence of a series: The unbearable inconclusiveness of the limit-comparison test , 2001 .
[24] L. Alcock,et al. Convergence of sequences and series: Interactions between visual reasoning and the learner's beliefs about their own role , 2004 .
[25] Y. Chevallard. L'analyse des pratiques enseignantes en théorie anthropologique du didactique , 1999 .
[26] Cheng-Shang Chang. Calculus , 2020, Bicycle or Unicycle?.
[27] L. Bostock,et al. Core Maths for Advanced Level , 2000 .
[28] Mathematical Methods for Science Students , 1962 .
[29] Lara Alcock,et al. Convergence of Sequences and Series 2: Interactions Between Nonvisual Reasoning and the Learner’s Beliefs about their own Role , 2004 .
[30] Elena Nardi,et al. Amongst Mathematicians: Teaching and Learning Mathematics at University Level , 2007 .