Statistical distribution of natural fractures and the possible physical generating mechanism

We have fitted field measurements of fracture spacings (from the vicinity of Lake Strom Thurmond, Georgia, U.S.A.) to the Weibull, Schuhmann and fractal distributions. The fracture spacings follow a fractal and Weibull distribution which implies that they were formed as a result of a repetitive fragmentation process. The limited variation of the fracture density with orientation in the study area suggests that the stress distribution generating these fractures may be uniform.

[1]  P. Rosin The Laws Governing the Fineness of Powdered Coal , 1933 .

[2]  B. Epstein The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution , 1947 .

[3]  Donald L. Turcotte,et al.  Fractals and fragmentation , 1986 .

[4]  L. Griffith A THEORY OF THE SIZE DISTRIBUTION OF PARTICLES IN A COMMINUTED SYSTEM , 1943 .

[5]  J. Gilvarry,et al.  Fracture of Brittle Solids. III. Experimental Results on the Distribution of Fragment Size in Single Fracture , 1962 .

[6]  Stuart Crampin,et al.  Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic , 1978 .

[7]  J. Bednar,et al.  Applications of median filtering to deconvolution, pulse estimation, and statistical editing of seismic data , 1983 .

[8]  W. Hartmann Terrestrial, lunar, and interplanetary rock fragmentation , 1969 .

[9]  J. Bednar,et al.  Alpha-trimmed means and their relationship to median filters , 1984 .

[10]  Z. Sen,et al.  Discontinuity spacing and RQD estimates from finite length scanlines , 1984 .

[11]  Scale invariant behaviour of massive and fragmented rock , 1990 .

[12]  S. Priest,et al.  ESTIMATION OF DISCONTINUITY SPACING AND TRACE LENGTH USING SCANLINE SURVEYS , 1981 .

[13]  A. Rouleau,et al.  Statistical characterization of the fracture system in the Stripa granite, Sweden , 1985 .

[14]  P. R. La Pointe,et al.  A method to characterize fracture density and connectivity through fractal geometry , 1988 .

[15]  J. Gilvarry,et al.  Fracture of Brittle Solids. II. Distribution Function for Fragment Size in Single Fracture (Experimental) , 1961 .

[16]  B. Velde,et al.  Fractal patterns of fractures in granites , 1991 .

[17]  William H. Press,et al.  Numerical recipes , 1990 .

[18]  S. Crampin,et al.  Estimating crack parameters from observations of P-wave velocity anisotropy , 1980 .

[19]  J. Gilvarry Fracture of Brittle Solids. IV. Two-Dimensional Distribution Function for Fragment Size in Single Fracture (Theoretical) , 1962 .

[20]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[21]  A. Huitson,et al.  Statistical Models in Applied Science. , 1976 .

[22]  Béla Beke Principles of comminution , 1964 .

[23]  Fred Kofi Boadu,et al.  The fractal character of fracture spacing and RQD , 1994 .

[24]  C. Sammis,et al.  A DAMAGE MECHANICS MODEL FOR FAULT ZONE FRICTION , 1992 .

[25]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[26]  D. E. Grady,et al.  Fragmentation of the universe , 1983 .

[27]  Mitsugu Matsushita,et al.  Fractal Viewpoint of Fracture and Accretion , 1985 .

[28]  A. Provost,et al.  Scaling rules in rock fracture and possible implications for earthquake prediction , 1982, Nature.

[29]  M. Zoback,et al.  Self‐similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole , 1992 .

[30]  M. Zoback,et al.  The distribution of natural fractures and joints at depth in crystalline rock , 1982 .