A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems
暂无分享,去创建一个
[1] R. Marino,et al. Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..
[2] P.V. Kokotovic,et al. Adaptive nonlinear output-feedback schemes with Marino-Tomei controller , 1994, Proceedings of 1994 American Control Conference - ACC '94.
[3] Frank L. Lewis,et al. Neural net robot controller with guaranteed tracking performance , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.
[4] Andrew R. Barron,et al. Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.
[5] Frank L. Lewis,et al. Control of Robot Manipulators , 1993 .
[6] Peter J. Gawthrop,et al. Neural networks for control systems - A survey , 1992, Autom..
[7] R. Marino,et al. Global adaptive observers for nonlinear systems via filtered transformations , 1992 .
[8] R. Marino. Adaptive observers for single output nonlinear systems , 1990 .
[9] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[10] M. Zeitz,et al. Extended Luenberger observer for non-linear multivariable systems , 1988 .
[11] X. Xia,et al. Non-linear observer design by observer canonical forms , 1988 .
[12] A. Krener,et al. Nonlinear observers with linearizable error dynamics , 1985 .
[13] D. Bestle,et al. Canonical form observer design for non-linear time-variable systems , 1983 .