Trapping and Driving Individual Charged Micro-particles in Fluid with an Electrostatic Device

A variety of micro-tweezers techniques, such as optical tweezers, magnetic tweezers, and dielectrophoresis technique, have been applied intensively in precise characterization of micro/nanoparticles and bio-molecules. They have contributed remarkably in better understanding of working mechanisms of individual sub-cell organelles, proteins, and DNA. In this paper, we present a controllable electrostatic device embedded in a microchannel, which is capable of driving, trapping, and releasing charged micro-particles suspended in microfluid, demonstrating the basic concepts of electrostatic tweezers. Such a device is scalable to smaller size and offers an alternative to currently used micro-tweezers for application in sorting, selecting, manipulating, and analyzing individual micro/nanoparticles. Furthermore, the system offers the potential in being combined with dielectrophoresis and other techniques to create hybrid micro-manipulation systems.

[1]  A. Kornyshev,et al.  Electrostatic interaction between helical macromolecules in dense aggregates: an impetus for DNA poly- and meso-morphism. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Qiang Cui,et al.  Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. , 2005, The Journal of chemical physics.

[3]  A. Mitchell,et al.  Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems , 2009, Analytical and bioanalytical chemistry.

[4]  D. Pressman,et al.  Specific Binding Activity of Isolated Light Chains of Antibodies , 1967, Science.

[5]  Clement Kleinstreuer,et al.  Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids , 2005 .

[6]  Arnan Mitchell,et al.  Optofluidics incorporating actively controlled micro- and nano-particles. , 2012, Biomicrofluidics.

[7]  M. Reed,et al.  Non-vanishing ponderomotive AC electrophoretic effect for particle trapping , 2011, Nanotechnology.

[8]  A. Kutner,et al.  Sunitinib: from charge-density studies to interaction with proteins. , 2014, Acta crystallographica. Section D, Biological crystallography.

[9]  One Step Quick Detection of Cancer Cell Surface Marker by Integrated NiFe-based Magnetic Biosensing Cell Cultural Chip , 2013 .

[10]  Prashanta Dutta,et al.  Dielectrophoretic separation of bioparticles in microdevices: A review , 2014, Electrophoresis.

[11]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[12]  Liesbet Lagae,et al.  Cell manipulation with magnetic particles toward microfluidic cytometry , 2009 .

[13]  A. Kornyshev,et al.  Theory of interaction between helical molecules , 1997 .

[14]  A. Popescu Possible Specificity of Cellular Interactions Due to Electrostatic Forces , 1995 .

[15]  S. Benkovic,et al.  A Perspective on Enzyme Catalysis , 2003, Science.

[16]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[17]  R. Pethig Review article-dielectrophoresis: status of the theory, technology, and applications. , 2010, Biomicrofluidics.

[18]  Ahmed Ould El Moctar,et al.  Optical manipulation of neutral nanoparticles suspended in a microfluidic channel , 2006 .

[19]  Alexander Zawaira,et al.  Computational analyses of the surface properties of protein–protein interfaces , 2006, Acta crystallographica. Section D, Biological crystallography.

[20]  P. Bongrand,et al.  Influence of surface charges on cell adhesion: difference between static and dynamic conditions. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[21]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[22]  Hiroyuki Fujita,et al.  Highly coupled ATP synthesis by F1-ATPase single molecules , 2005, Nature.

[23]  J. Carbeck,et al.  Effects of Cooperativity in Proton Binding on the Net Charge of Proteins in Charge Ladders , 2003 .

[24]  Naohiro Matsugaki,et al.  Allosteric Modulation of the RNA Polymerase Catalytic Reaction Is an Essential Component of Transcription Control by Rifamycins , 2005, Cell.

[25]  Andreas Acrivos,et al.  Particle motions and segregation in dielectrophoretic microfluidics , 2003 .

[26]  Steven Chu,et al.  Cold atoms and quantum control , 2002, Nature.

[27]  J. Israelachvili,et al.  Debye Length and Double-Layer Forces in Polyelectrolyte Solutions , 2002 .

[28]  Dongqing Li,et al.  Flow characteristics of water in microtubes , 1999 .

[29]  Kirstine Berg-Sørensen,et al.  Optical manipulation of single molecules in the living cell. , 2014, Physical chemistry chemical physics : PCCP.

[30]  D. Lascar,et al.  A Novel Approach to β-delayed Neutron Spectroscopy Using the Beta-decay Paul Trap , 2014 .

[31]  V. Oleshko,et al.  Are electron tweezers possible? , 2011, Ultramicroscopy.

[32]  Cees Dekker,et al.  Recent advances in magnetic tweezers. , 2012, Annual review of biophysics.

[33]  Gilles Charvin,et al.  Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation , 2002 .

[34]  Magnus Andersson,et al.  Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  I. Rouzina,et al.  Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation. , 1997, Biophysical chemistry.

[36]  K. Greulich,et al.  Application of laser optical tweezers in immunology and molecular genetics. , 1991, Cytometry.

[37]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[38]  Hsien-Chang Chang,et al.  Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures , 2015 .

[39]  D. Black,et al.  Structure of PTB Bound to RNA: Specific Binding and Implications for Splicing Regulation , 2005, Science.

[40]  Carl Wu,et al.  Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis , 1987, Nature.

[41]  J Moult,et al.  Role of electrostatic screening in determining protein main chain conformational preferences. , 1995, Biochemistry.

[42]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[43]  Di Chen,et al.  Progress of Microfluidics for Biology and Medicine , 2013 .

[44]  R. Holzwarth,et al.  Femtosecond optical frequency combs , 2009 .

[45]  Hsueh-Chia Chang,et al.  An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. , 2007, Biomicrofluidics.

[46]  S. Chu,et al.  Laser Manipulation of Atoms and Particles , 1991, Science.

[47]  Chun Yang,et al.  AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. , 2012, Biomicrofluidics.

[48]  Nengqin Jia,et al.  Magnetic Fe3O4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing , 2014 .

[49]  Shengyong Xu,et al.  A multilayered microfluidic system with functions for local electrical and thermal measurements , 2012 .

[50]  Martin Buck,et al.  Specific binding of the transcription factor sigma-54 to promoter DNA , 1992, Nature.

[51]  Alexandre Varnek,et al.  A fast and Space-Efficient boundary element method for computing electrostatic and hydration effects in large molecules , 1996, J. Comput. Chem..

[52]  J. Rosenblatt,et al.  The Effect of Electrostatic Charge Interactions on Release Rates of Gentamicin from Collagen Matrices , 1995, Pharmaceutical Research.

[53]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[54]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[55]  W. Russel,et al.  Brownian Motion of Small Particles Suspended in Liquids , 1981 .

[56]  Humio Inaba,et al.  Optical trapping and manipulation of microscopic particles and biological cells by laser beams , 1996 .

[57]  P. Dubin,et al.  Nonspecific electrostatic binding characteristics of the heparin-antithrombin interaction. , 2007, Biopolymers.

[58]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Swati Mohanty,et al.  Dielectrophoretic separation of micron and submicron particles: A review , 2014, Electrophoresis.

[60]  H. A. Pohl,et al.  Separation of Living and Dead Cells by Dielectrophoresis , 1966, Science.

[61]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[62]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[63]  Ebru Özgür,et al.  Dielectrophoresis: Applications and future outlook in point of care , 2013, Electrophoresis.

[64]  Vahid Sandoghdar,et al.  Geometry-induced electrostatic trapping of nanometric objects in a fluid , 2010, Nature.

[65]  Martin Pumera,et al.  Two‐Dimensional Transition Metal Dichalcogenides in Biosystems , 2015 .

[66]  Lianmao Peng,et al.  Transmission electron microscope observation of a freestanding nanocrystal in a Coulomb potential well. , 2010, Nanoscale.

[67]  Ajdari,et al.  Electro-osmosis on inhomogeneously charged surfaces. , 1995, Physical review letters.

[68]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[69]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[70]  W. M. Lee,et al.  Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. , 2004, Optics letters.