Core/Shell Approach to Dopant Incorporation and Shape Control in Colloidal Zinc Oxide Nanorods

Tunable aliovalent doping is critical to controlling the optoelectronic properties of semiconductor nanocrystal systems. However, unintentional dopant-induced shape evolution and kinetically limited doping reactions in low-temperature nanocrystal syntheses make it difficult to independently control shape and incorporate dopants in colloidal metal oxide nanocrystals. Here, we demonstrate a synthetic strategy for achieving simultaneous control of both nanorod shape and dopant concentration in colloidal zinc oxide nanorods. We show that this approach succeeds in doping zinc oxide nanorods using Group III dopants (indium or aluminum) in varying concentrations, and we quantify the effects of dopant incorporation on the structural, optical, and plasmonic properties of the nanorods. The synthesis of undoped zinc oxide nanorod templates and subsequent addition of dopant salts to the ongoing reaction enables both shape retention and dopant incorporation. Subsequent growth of an undoped shell on the nanorods incorp...

[1]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[2]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[3]  S. De,et al.  Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. , 2014, Nanoscale.

[4]  Dennis Nordlund,et al.  Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. , 2014, Journal of the American Chemical Society.

[5]  A Paul Alivisatos,et al.  Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption spectroscopy. , 2007, The journal of physical chemistry. A.

[6]  N. Zhang,et al.  Colloidal Indium-Doped Zinc Oxide Nanocrystals with Tunable Work Function: Rational Synthesis and Optoelectronic Applications , 2014 .

[7]  P. Adriaensens,et al.  Increasing the solubility limit for tetrahedral aluminium in ZnO: Al nanorods by variation in synthesis parameters , 2015 .

[8]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[9]  P. Smet,et al.  Dopant Incorporation in Colloidal Quantum Dots: A Case Study on Co2+ Doped ZnO , 2007 .

[10]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[11]  Li-ping Zhu,et al.  Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties. , 2013, Nanoscale.

[12]  P. Adriaensens,et al.  Relation between synthesis conditions, dopant position and charge carriers in aluminium-doped ZnO nanoparticles , 2013 .

[13]  J. Jasieniak,et al.  Non-injection synthesis of doped zinc oxide plasmonic nanocrystals. , 2014, ACS nano.

[14]  Lin-wang Wang,et al.  Selective facet reactivity during cation exchange in cadmium sulfide nanorods. , 2009, Journal of the American Chemical Society.

[15]  D. Milliron,et al.  Comparison of extra electrons in colloidal n-type Al(3+)-doped and photochemically reduced ZnO nanocrystals. , 2012, Chemical communications.

[16]  A. P. Roth,et al.  Absorption edge shift in ZnO thin films at high carrier densities , 1981 .

[17]  V. Ashok,et al.  Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals. , 2015, Physical chemistry chemical physics : PCCP.

[18]  V. Norman The diffusion of aluminium and gallium in zinc oxide , 1969 .

[19]  A. Salleo,et al.  Modular synthetic design enables precise control of shape and doping in colloidal zinc oxide nanorods , 2015 .

[20]  Z. Ye,et al.  Dopant induced shape evolution of colloidal nanocrystals: The case of zinc oxide , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[21]  Hideo Hosono,et al.  Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application , 2006 .

[22]  A. Salleo,et al.  Low-temperature processed Ga-doped ZnO coatings from colloidal inks. , 2013, Journal of the American Chemical Society.

[23]  T. Hyeon,et al.  Synthesis of ZnO Nanocrystals with Cone, Hexagonal Cone, and Rod Shapes via Non‐Hydrolytic Ester Elimination Sol–Gel Reactions , 2005 .

[24]  Evan L. Runnerstrom,et al.  Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals. , 2014, The journal of physical chemistry letters.

[25]  Roberto Simonutti,et al.  Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption , 2013 .

[26]  E. Fortunato,et al.  Effect of different dopant elements on the properties of ZnO thin films , 2002 .

[27]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[28]  Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth. , 2012, ACS nano.

[29]  Alberto Salleo,et al.  Intrinsic and Doped Zinc Oxide Nanowires for Transparent Electrode Fabrication via Low-Temperature Solution Synthesis , 2009 .

[30]  Delia J. Milliron,et al.  Chemistry of Doped Colloidal Nanocrystals , 2013 .

[31]  A. Tao,et al.  Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. , 2011, Journal of the American Chemical Society.

[32]  Taejong Paik,et al.  Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. , 2014, Journal of the American Chemical Society.

[33]  L. Bourgeois,et al.  Plasmonic Ge-doped ZnO nanocrystals. , 2015, Chemical communications.

[34]  B. Chung,et al.  Shape-Controlled Syntheses of Gold Nanoprisms and Nanorods Influenced by Specific Adsorption of Halide Ions , 2007 .

[35]  Delia J. Milliron,et al.  Near‐Infrared Spectrally Selective Plasmonic Electrochromic Thin Films , 2013 .

[36]  F. Huang,et al.  Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. , 2011, Chemical communications.

[37]  P. Jain,et al.  Plasmons in Photocharged ZnO Nanocrystals Revealing the Nature of Charge Dynamics , 2013 .

[38]  F. Huang,et al.  Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. , 2010, Journal of the American Chemical Society.

[39]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[40]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[41]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[42]  Bernd Rech,et al.  Transparent Conductive Zinc Oxide , 2008 .

[43]  Gang Han,et al.  Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.