11 Response surface designs

Publisher Summary This chapter focuses on response surface designs. When the mechanism that produced the data is either unknown or poorly understood, so that the mathematical form of the true response surface is unknown, an empirical model is often fitted to the data. An empirical model is usually linear in the parameters and often of polynomial form, either in the basic predictor variables or in transformed entities constructed from these basic predictors. The purpose of fitting empirical models is to provide a mathematical French curve that summarizes the data. The chapter discusses the design of experiments for such empirical models. There is another useful type of model, however, the mechanistic model. If knowledge of the underlying mechanism that produced the data is available, it is sometimes possible to construct a model that represents the mechanism reasonably well. An empirical model usually contains fewer parameters, fits the data better, and extrapolates more sensibly. However, mechanistic models are often nonlinear in the parameters, and more difficult to formulate, to fit, and to evaluate.

[1]  T. J. Mitchell,et al.  D-optimal fractions of three-level factorial designs , 1978 .

[2]  Dennis K. J. Lin,et al.  Screening properties of certain two-level designs , 1995 .

[3]  Norman R. Draper,et al.  Designs for minimum bias estimation , 1988 .

[4]  O. L. Davies,et al.  Design and analysis of industrial experiments , 1954 .

[5]  G. Box,et al.  THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN , 1963 .

[6]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[7]  W. Westlake,et al.  COMPOSITE DESIGNS BASED ON IRREGULAR FRACTIONS OF FACTORIALS. , 1965, Biometrics.

[8]  G. Box,et al.  Some New Three Level Designs for the Study of Quantitative Variables , 1960 .

[9]  Norman R. Draper,et al.  Another look at rotatability , 1990 .

[10]  N. Draper,et al.  Isolation of Degrees of Freedom for Box—Behnken Designs , 1994 .

[11]  R. Baun,et al.  Response Surface Designs for Three Factors at Three Levels , 1959 .

[12]  W. Notz,et al.  Minimal point second order designs , 1982 .

[13]  Kazue Sawade,et al.  A Hadamard matrix of order 268 , 1985, Graphs Comb..

[14]  G. E. P. Box 135. Query: Replication of Non-Center Points in the Rotatable and Near-Rotatable Central Composite Design , 1959 .

[15]  M. J. Box,et al.  Factorial Designs, the |X′X| Criterion, and Some Related Matters , 1971 .

[16]  Agnes M Herzberg The Robust Design of Experiments: A Review. , 1981 .

[17]  O. Dykstra,et al.  Partial Duplication of Factorial Experiments , 1959 .

[18]  James M. Lucas,et al.  Optimum Composite Designs , 1974 .

[19]  H. O. Hartley,et al.  Smallest Composite Designs for Quadratic Response Surfaces , 1959 .

[20]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[21]  G. Box MULTI-FACTOR DESIGNS OF FIRST ORDER , 1952 .

[22]  Dennis K. J. Lin,et al.  Small response-surface designs , 1990 .

[23]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[24]  Norman R. Draper,et al.  Center Points in Second-Order Response Surface Designs , 1982 .

[25]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[26]  George E. P. Box,et al.  The 2 k — p Fractional Factorial Designs Part II. , 1961 .

[27]  Dennis K. J. Lin,et al.  Connections between two-level designs of resolutions III and V , 1990 .

[28]  Douglas P. Wiens,et al.  Designs for approximately linear regression: Maximizing the minimum coverage probability of confidence ellipsoids , 1993 .

[29]  N. Draper Small Composite Designs , 1985 .

[30]  G. Box,et al.  A Basis for the Selection of a Response Surface Design , 1959 .

[31]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[32]  J. S. Hunter,et al.  The 2 k — p Fractional Factorial Designs , 1961 .

[33]  R. M. DeBaun,et al.  Block Effects in the Determination of Optimum Conditions , 1956 .

[34]  R. L. Rechtschaffner Saturated Fractions of 2 n and 3 n Factorial Designs , 1967 .

[35]  W. DuMouchel,et al.  A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model , 1994 .

[36]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[37]  M. J. Box,et al.  On Minimum-Point Second-Order Designs , 1974 .

[38]  O. Dykstra,et al.  Partial Duplication of Response Surface Designs , 1960 .

[39]  M. Deaton,et al.  Response Surfaces: Designs and Analyses , 1989 .

[40]  F. Pukelsheim,et al.  First and second order rotatability of experimental designs, moment matrices, and information surfaces , 1991 .

[41]  Dennis K. J. Lin,et al.  Projection properties of Plackett and Burman designs , 1992 .

[42]  W. Welch Computer-Aided Design of Experiments for Response Estimation , 1984 .

[43]  J. S. Hunter,et al.  Multi-Factor Experimental Designs for Exploring Response Surfaces , 1957 .